Contents

CHAPTER 1. CONCEPTS FROM THERMODYNAMICS

1.1	INTRODUCTION	1
1.2	Thermodynamic Systems	2
1.3	VARIABLES OF STATE	3
1.4	THE FIRST PRINCIPAL LAW	4
1.5	IRREVERSIBLE AND REVERSIBLE PROCESSES	6
1.6	Perfect Gases	7
1.7	THE FIRST LAW APPLIED TO REVERSIBLE PROCESSES. SPECIFIC HEATS	10
1.8	THE FIRST LAW APPLIED TO IRREVERSIBLE PROCESSES	14
1.9	THE CONCEPT OF ENTROPY. THE SECOND LAW	17
1.10	THE CANONICAL EQUATION OF STATE. FREE ENERCY AND FREE ENTHALPY	20
1.11	RECIPROCITY RELATIONS	22
1.12	ENTROPY AND TRANSPORT PROCESSES	23
1.13*	EQUILIBRIUM CONDITIONS	24
1.14*	Mixtures of Perfect Gases	25
1.15*	THE LAW OF MASS ACTION	27
1.16*	Dissociation	29
1.17*	Condensation	33
1.18	Real Gases in Gasdynamics	34

CHAPTER 2. ONE-DIMENSIONAL GASDYNAMICS

2.1	INTRODUCTION	39
2.2	THE CONTINUITY EQUATION	40
2.3	THE ENERGY EQUATION	- 41
2.4	Reservoir Conditions	43
2.5	Euler's Equation	45
2.6	THE MOMENTUM EQUATION	47
2.7	ISENTROPIC CONDITIONS	49
2.8	Speed of Sound; Mach Number	50
2.9	THE AREA-VELOCITY RELATION	51
2.10	Results from the Energy Equation	53
2.1 1	BERNOULLI EQUATION; DYNAMIC PRESSURE	55
2.12	Flow at Constant Area	56
2.13	THE NORMAL SHOCK RELATIONS FOR A PERFECT GAS	57

CHAPTER 3. ONE-DIMENSIONAL WAVE MOTION

3.1	Introduction	62
3.2	THE PROPAGATING SHOCK WAVE	62
3.3	One-Dimensional Isentropic Equations	65

xii

CONTENTS

3.4	THE ACOUSTIC EQUATIONS	67
3.5	PROPAGATION OF ACOUSTIC WAVES	68
3.6	THE SPEED OF SOUND	69
3.7	PRESSURE AND PARTICLE VELOCITY IN A SOUND WAVE	71
3.8	"LINEARIZED" SHOCK TUBE	72
3.9	ISENTROPIC WAVES OF FINITE AMPLITUDE	74
3.10	PROPAGATION OF FINITE WAVES	76
3.11	CENTERED EXPANSION WAVE	78
3.12	THE SHOCK TUBE	79

CHAPTER 4. WAVES IN SUPERSONIC FLOW

4.1	Introduction	84
4.2	Oblique Shock Waves	85
4.3	Relation between β and θ	86
4.4	SUPERSONIC FLOW OVER A WEDGE	88
4.5	MACH LINES	89
4.6	PISTON ANALOGY	91
4.7	WEAK OBLIQUE SHOCKS	92
4.8	SUPERSONIC COMPRESSION BY TURNING	93
4.9	SUPERSONIC EXPANSION BY TURNING	97
4.10	THE PRANDTL-MEYER FUNCTION	98
4.11	SIMPLE AND NONSIMPLE RECIONS	100
4.12	Reflection and Intersection of Oblique Shocks	101
4.13	INTERSECTION OF SHOCKS OF THE SAME FAMILY	102
4.14	DETACHED SHOCKS	103
4.15	MACH REFLECTION	106
4.16	SHOCK-EXPANSION THEORY	107
4.17	THIN AIRFOIL THEORY	109
4.18*	FLAT LIFTING WINGS	113
4.19*	Drag Reduction	115
4.20*	THE HODOGRAPH PLANE	118
4.21	CONE IN SUPERSONIC FLOW	120

CHAPTER 5. FLOW IN DUCTS AND WIND TUNNELS

5.1	Introduction	124
5.2	FLOW IN CHANNEL OF VARYING AREA	124
5.3	AREA RELATIONS	125
5.4	Nozzle Flow	127
5.5	NORMAL SHOCK RECOVERY	130
5.6	Effects of Second Throat	131
5.7	ACTUAL PERFORMANCE OF WIND TUNNEL DIFFUSERS	133
5.8	WIND TUNNEL PRESSURE RATIO	133
5.9	SUPERSONIC WIND TUNNELS	136
5.10	WIND TUNNEL CHARACTERISTICS	137
5.11	Compressor Matching	139
5.12	Other Wind Tunnels and Testing Methods	142

CHAPTER 6. METHODS OF MEASUREMENT

6.1 INTRODUCTION

144

CONTENTS

6.2	STATIC PRESSURE	144
6.3	TOTAL PRESSURE	147
6.4	MACH NUMBER FROM PRESSURE MEASUREMENTS	148
6.5	WEDGE AND CONE MEASUREMENTS	149
6.6	Velocity	150
6.7	TEMPERATURE AND HEAT TRANSFER MEASUREMENTS	151
6.8	Density Measurements	153
6.9	Index of Refraction	153
6.10	Schlieren System	157
6.11	THE KNIFE EDGE	159
6.12	Some Practical Considerations	161
6.13	The Shadow Method	1 62
6.14	INTERFERENCE METHOD	164
6.15	Mach-Zehnder Interferometer	165
6.16	Interferometer Techniques	168
6.17	X-RAY ABSORPTION AND OTHER METHODS	170
6.18	DIRECT MEASUREMENT OF SKIN FRICTION	171
6.19	HOT-WIRE PROBE	172
6.20	SHOCK TUBE INSTRUMENTATION	177

CHAPTER 7. THE EQUATIONS OF FRICTIONLESS FLOW

7.1	INTRODUCTION	178
7.2	NOTATION	178
7.3	THE EQUATION OF CONTINUITY	180
7.4	THE MOMENTUM EQUATION	182
7.5	THE ENERCY EQUATION	185
7.6	The Eulerian Derivative	186
7.7	Splitting the Energy Equation	188
7.8	THE TOTAL ENTHALPY	190
7.9	NATURAL COORDINATES. CROCCO'S THEOREM	191
7.10	RELATION OF VORTICITY TO CIRCULATION AND ROTATION	194
7.11	THE VELOCITY POTENTIAL	196
7.12	IRROTATIONAL FLOW	197
7.13	Remarks on the Equations of Motion	200

CHAPTER 8. SMALL-PERTURBATION THEORY

8.1	Introduction	202
8.2	DERIVATION OF THE PERTUBATION EQUATIONS	203
8.3	Pressure Coefficient	206
8.4	BOUNDARY CONDITIONS	206
8.5	TWO-DIMENSIONAL FLOW PAST A WAVE-SHAPED WALL	208
8.6	WAVY WALL IN SUPERSONIC FLOW	212
8.7	Supersonic Thin Airfoil Theory	215
8.8	PLANAR FLOWS	216

CHAPTER 9. BODIES OF REVOLUTION. SLENDER BODY THEORY

9.1	Introduction	218
9.2	Cylindrical Coordinates	219
9.3	BOUNDARY CONDITIONS	221

xiii

CONTENTS

9.4 Pressure Coefficient	224
9.5 Axially Symmetric Flow	224
9.6 SUBSONIC FLOW	226
9.7 SUPERSONIC FLOW	226
9.8 VELOCITIES IN THE SUPERSONIC FIELD	229
9.9 SOLUTION FOR A CONE	230
9.10 Other Meridian Shapes	232
9.11 SOLUTION FOR SLENDER CONE	233
9.12 Slender Body Drag	235
9.13* YAWED BODY OF REVOLUTION IN SUPERSONIC FLOW	239
9.14* Cross-Flow Boundary Conditions	241
9.15* CROSS-FLOW SOLUTIONS	242
9.16 CROSS FLOW FOR SLENDER BODIES OF REVOLUTION	242
9.17 LIFT OF SLENDER BODIES OF REVOLUTION	243
9.18 Slender Body Theory	246
9.19* Rayleigh's Formula	247

CHAPTER 10. THE SIMILARITY RULES OF HIGH-SPEED FLOW

10.1	INTRODUCTION	252
10. 2	TWO-DIMENSIONAL LINEARIZED FLOW. PRANDTL-GLAUERT AND GÖTHERT	
	Rules	253
10.3	Two-Dimensional Transonic Flow. von Kármán's Rules	256
10.4	LINEARIZED AXIALLY SYMMETRIC FLOW	258
10.5	Planar Flow	26 0
10.6	SUMMARY AND APPLICATION OF THE SIMILARITY LAWS	262
10.7	HIGH MACH NUMBERS. HYPERSONIC SIMILARITY	263

CHAPTER 11. TRANSONIC FLOW

11.1	INTRODUCTION	270
11.2	DEFINITION OF THE TRANSONIC RANCE	270
11.3	TRANSONIC FLOW PAST WEDCE SECTIONS	271
11.4	TRANSONIC FLOW PAST A CONE	276
11.5	TRANSONIC FLOW PAST SMOOTH TWO-DIMENSIONAL SHAPES. THIS	e Ques-
	tion of Shock-Free Flow	278
11.6*	The Hodograph Transformation of the Equations	280

CHAPTER 12. THE METHOD OF CHARACTERISTICS

12.1	INTRODUCTION	284
12.2	Hyperbolic Equations	285
12.3	THE COMPATIBILITY RELATION	285
12.4	The Computation Method	288
12.5	INTERIOR AND BOUNDARY POINTS	29 1
12.6*	Axially Symmetric Flow	292
12.7*	Nonisentropic Flow	295
1 2. 8	THEOREMS ABOUT PLANE FLOW	296
12.9	COMPUTATION WITH WEAK, FINITE WAVES	298
12.10	INTERACTION OF WAVES	29 9
12.11	DESIGN OF SUPERSONIC NOZZLES	3 01
12.12	COMPARISON OF CHARACTERISTICS AND WAVES	304

CONTENTS

CHAPTER 13. EFFECTS OF VISCOSITY AND CONDUCTIVITY

13.1	Introduction	305
13.2	COUETTE FLOW	306
13.3	Recovery Temperature	
13.4	VELOCITY DISTRIBUTION IN COUETTE FLOW	311
13.5	RAYLEICH'S PROBLEM. THE DIFFUSION OF VORTICITY	313
13.6	The Boundary-Layer Concept	316
13.7	PRANDTL'S EQUATIONS FOR A FLAT PLATE	319
13.8	CHARACTERISTIC RESULTS FROM THE BOUNDARY-LAYER EQUATION	320
13.9	The Displacement Effect of the Boundary Layer. Momentum and	
	ENERCY INTEGRALS	323
13.10	CHANCE OF VARIABLES	325
13.11	BOUNDARY LAYERS ON PROFILES OTHER THAN A FLAT PLATE	326
13.12	FLOW THROUGH A SHOCK WAVE	329
13.13*	The Navier-Stokes Equations	332
13.14	THE TURBULENT BOUNDARY LAYER	338
13.15	BOUNDARY-LAYER EFFECTS ON THE EXTERNAL FLOW FIELD	340
13.16	Shock-Wave Boundary-Layer Interaction	342
13.17	TURBULENCE	346
13.18	Couette Flow of a Dissociating Gas	348
	CHAPTER 14. CONCEPTS FROM GASKINETICS	
14.1	Introduction	353
14.2	Probability Concepts	355
14.3	DISTRIBUTION FUNCTIONS	359
14.4	THE VIRIAL THEOREM OF CLAUSIUS	361
14.5	THE EQUATION OF STATE OF A PERFECT GAS	362
14.6	THE MAXWELL-BOLTZMANN DISTRIBUTION	3 63
14.7*	THE SPECIFIC HEATS OF GASES	366
14.8	MOLECULAR COLLISIONS. MEAN FREE PATH AND RELAXATION TIMES	369
14.9	Shear Viscosity and Heat Conduction	372
14.10	COUETTE FLOW OF A HIGHLY RAREFIED GAS	373
14.11	THE CONCEPTS OF SLIP AND ACCOMMODATION	376
14.12	Relaxation Effects of the Internal Degrees of Freedom	378
14.13	The Limit of Continuum Theory	38 0
EXER	CISES	383
SELE	SELECTED REFERENCES	
TABL	ES	
I.	CRITICAL DATA AND CHARACTERISTIC TEMPERATURES FOR SEVERAL	
	Gases	405
II.	FLOW PARAMETERS VERSUS M FOR SUBSONIC FLOW	406
III.	Flow Parameters versus M for Supersonic Flow	409
IV.	PARAMETERS FOR SHOCK FLOW	418
v.	MACH NUMBER AND MACH ANGLE VERSUS PRANDTL-MEYER FUNCTION	425

CHARTS

1.	Oblique Shock Chart	428
2.	Oblique Shock Chart	430

хv