CONTENTS

PREFACE TO SECOND EDITION	
PREFACE TO REVISED EDITIONS	
PREFACE TO FIRST EDITION	
How to Use the Book	
WHAT IS MATHEMATICS?	
CHAPTER I. THE NATURAL NUMBERS	1
Introduction	1
81. Calculation with Integers	1
1. Laws of Arithmetic. 2. The Representation of Integers. 3.	
Computation in Systems Other than the Decimal.	
82. The Infinitude of the Number System. Mathematical Induction	9
1. The Principle of Mathematical Induction. 2. The Arithmetical Progres-	
sion. 3. The Geometrical Progression. 4. The Sum of the First n	
Squares, 5, An Important Inequality, 6. The Binomial Theo-	
rem. 7. Further Remarks on Mathematical Induction.	
SUPPLEMENT TO CHAPTER I. THE THEORY OF NUMBERS	21
Introduction	21
§1. The Prime Numbers	21
1. Fundamental Facts. 2. The Distribution of the Primes. a. Formulas	
Producing Primes. b. Primes in Arithmetical Progressions. c. The Prime	
Number Theorem, d. Two Unsolved Problems Concerning Prime Num-	
bers.	
§2. Congruences	31
1. General Concepts. 2. Fermat's Theorem. 3. Quadratic Residues.	
83. Pythagorean Numbers and Fermat's Last Theorem	40
84. The Euclidean Algorithm.	42
1. General Theory. 2. Application to the Fundamental Theorem of Arith-	
metic. 3. Euler's φ Function. Fermat's Theorem Again. 4. Continued	
Fractions. Diophantine Equations.	
CHAPTER II. THE NUMBER SYSTEM OF MATHEMATICS	52
Introduction	52
81. The Rational Numbers	52
1. Rational Numbers as a Device for Measuring. 2. Intrinsic Need for the	
Rational Numbers. Principal of Generalization. 3. Geometrical Interpre-	
tation of Rational Numbers.	
82. Incommensurable Segments, Irrational Numbers, and the Concept of	
	58
1. Introduction. 2. Decimal Fractions. Infinite Decimals. 3. Lim-	
its. Infinite Geometrical Series. 4. Rational Numbers and Periodic Deci-	

CONTENTS

mals. 5. General Definition of Irrational Numbers by Nested	
Intervals. 6. Alternative Methods of Defining Irrational Num-	
bers. Dedekind Cuts.	
§3. Remarks on Analytic Geometry	72
1. The Basic Principle. 2. Equations of Lines and Curves.	
§4. The Mathematical Analysis of Infinity	77
1. Fundamental Concepts. 2. The Denumerability of the Rational Num-	
bers and the Non-Denumerability of the Continuum. 3. Cantor's "Cardinal	
Numbers." 4. The Indirect Method of Proof. 5. The Paradoxes of the In-	
finite. 6. The Foundations of Mathematics.	
§5. Complex Numbers	88
1. The Origin of Complex Numbers. 2. The Geometrical Interpretation of	
Complex Numbers. 3. De Moivre's Formula and the Roots of	
Unity. 4. The Fundamental Theorem of Algebra.	
§6. Algebraic and Transcendental Numbers	103
1. Definition and Existence. 2. Liouville's Theorem and the Construction	
of Transcendental Numbers.	
SUPPLEMENT TO CHAPTER II. THE ALGEBRA OF SETS	108
1. General Theory. 2. Application to Mathematical Logic. 3. An Appli-	
cation to the Theory of Probability.	
CHAPTER III. GEOMETRICAL CONSTRUCTIONS. THE ALGEBRA OF NUMBER FIELDS	117
Introduction	117
Part I. Impossibility Proofs and Algebra	120
§1. Fundamental Geometrical Constructions	120
1. Construction of Fields and Square Root Extraction. 2. Regular Poly-	
gons. 3. Apollonius' Problem.	
§2. Constructible Numbers and Number Fields	127
1. General Theory. 2. All Constructible Numbers are Algebraic.	
§3. The Unsolvability of the Three Greek Problems	134
1. Doubling the Cube. 2. A Theorem on Cubic Equations. 3. Trisecting	
the Angle. 4. The Regular Heptagon. 5. Remarks on the Problem of	
Squaring the Circle.	
Part II. Various Methods for Performing Constructions	140
§4. Geometrical Transformations. Inversion	140
1. General Remarks. 2. Properties of Inversion. 3. Geometrical Con-	
struction of Inverse Points. 4. How to Bisect a Segment and Find the Cen-	
ter of a Circle with the Compass Alone.	
§5. Constructions with Other Tools. Mascheroni Constructions with Compass	
Alone	146
1. A Classical Construction for Doubling the Cube. 2. Restriction to the	
Use of the Compass Alone. 3. Drawing with Mechanical Instru-	
ments. Mechanical Curves. Cycloids. 4. Linkages. Peaucellier's and	
Hart's Inversors.	
§6. More About Inversions and its Applications	158
1. Invariance of Angles. Families of Circles. 2. Application to the Prob-	
lem of Apollonius. 3. Repeated Reflections.	
CHAPTER IV. PROJECTIVE GEOMETRY. AXIOMATICS. NON-EUCLIDEAN GEOMETRIES	165
§1. Introduction	166

CONTENTS

1. Classification of Geometrical Properties. Invariance under Transfor-	
mations. 2. Projective Transformations.	168
 Fundamental Concepts The Group of Projective Transformations. 2. Desargues's Theorem. 	100
§3. Cross-Ratio	172
1. Definition and Proof of Invariance. 2. Application to the Complete	
Quadrilateral.	
§4. Parallelism and Infinity	180
1. Points at Infinity as "Ideal Points." 2. Ideal Elements and Projec-	
tion. 3. Cross-Ratio with Elements at Infinity.	
§5. Applications	185
1. Preliminary Remarks. 2. Proof of Desargues's Theorem in the	
Plane. 3. Pascal's Theorem. 4. Brianchon's Theorem. 5. Remark on	
Duality.	
§6. Analytic Representation	191
1. Introductory Remarks. 2. Homogeneous Coördinates. The Algebraic	
Basis of Duality.	
§7. Problems on Constructions with the Straightedge Alone	196
§8. Conics and Quadric Surfaces	198
1. Elementary Metric Geometry of Conics. 2. Projective Properties of	
Conics. 3. Conics as Line Curves. 4. Pascal's and Brianchon's General	
Theorems for Conics. 5. The Hyperboloid.	
§9. Axiomatics and Non-Euclidean Geometry	214
1. The Axiomatic Method. 2. Hyperbolic Non-Euclidean Geome-	
try. 3. Geometry and Reality. 4. Poincaré's Model. 5. Elliptic or Rie-	
mannian Geometry.	
Appendix. Geometry in More than Three Dimensions	227
1. Introduction. 2. Analytic Approach. 3. Geometrical or Combinatorial	
Approach.	
Chapter V. Topology	235
Introduction	235
§1. Euler's Formula for Polyhedra	236
§2. Topological Properties of Figures	241
1. Topological Properties. 2. Connectivity.	
§3. Other Examples of Topological Theorems	244
1. The Jordan Curve Theorem. 2. The Four Color Problem. 3. The Con-	
cept of Dimension. 4. A Fixed Point Theorem. 5. Knots.	
§4. The Topological Classification of Surfaces.	256
1. The Genus of a Surface. 2. The Euler Characteristic of a Sur-	
face. 3. One-Sided Surfaces.	
Appendix	264
1. The Five Color Theorem. 2. The Jordan Curve Theorem for Poly-	
gons. 3. The Fundamental Theorem of Algebra.	
CHAPTER VI. FUNCTIONS AND LIMITS	272
Introduction	272
\$1. Variable and Function	_
§1. Variable and Function	273
1. Definitions and Examples. 2. Radian Measure of Angles. 3. The	273

tions. 5. Continuity. 6. Functions of Several Variables. 7. Functions and Transformations.	
§2. Limits	289
1. The Limit of a Sequence a_n . 2. Monotone Sequences. 3. Euler's Num-	
ber e. 4. The Number π . 5. Continued Fractions.	
§3. Limits by Continuous Approach.	303
1. Introduction. General Definition. 2. Remarks on the Limit Con-	
cept. 3. The limit of sin x/x . 4. Limits as $x \to \infty$.	
§4. Precise Demilion of Continuity	310
95. Two Fundamental Theorems on Continuous Functions	312
1. Bolzano's Theorem. 2. Proof of Bolzano's Theorem. 3. Weierstrass'	
Theorem on Extreme values. 4. A Theorem on Sequences. Compact Sets.	
90. Some Applications of Bolzano's Theorem	317
Supple ENERGY TO CHAPTER MADE TO A PRODUCT A PRODUCT IN MECHANICS.	000
SUPPLEMENT TO CHAPTER VI. MORE EXAMPLES ON LIMITS AND CONTINUITY	322
gi. Examples of Limits	322
1. General Remarks. 2. The Limit of q^{*} . 5. The Limit of \sqrt{p} . 4. Discontinuous Functions as Limits of Continuous Functions 5. Limits by Itora	
tion	
82 Example on Continuity	397
CHAPTER VII MAXIMA AND MINIMA	320
Introduction	320
81 Problems in Elementary Geometry	330
1. Maximum Area of a Triangle with Two Sides Given 2 Heron's Tho-	000
erem. Extremum Property of Light Rays 3 Applications to Problems on	
Triangles 4 Tangent Properties of Ellipse and Hyper-	
hola. Corresponding Extremum Properties 5 Extreme Distances to a	
Given Curve	
82. A General Principal Underlying Extreme Value Problems	338
1. The Principle. 2. Examples.	000
§3. Stationary Points and the Differential Calculus	341
1. Extrema and Stationary Points. 2. Maxima and Minima of Functions	
of Several Variables. Saddle Points. 3. Minimax Points and Topol-	
ogy. 4. The Distance from a Point to a Surface.	
84. Schwarz's Triangle Problem	346
1. Schwarz's Proof. 2. Another Proof. 3. Obtuse Triangles.	010
4. Triangles Formed by Light Rays. 5. Remarks Concerning Problems of	
Reflection and Ergodic Motion.	
§5. Steiner's Problem	354
1. Problem and Solution. 2. Analysis of the Alternatives. 3. A Comple-	
mentary Problem. 4. Remarks and Exercises. 5. Generalization to the	
Street Network Problem.	
§6. Extrema and Inequalities	361
1. The Arithmetical and Geometrical Mean of Two Positive	
Quantities. 2. Generalization to n Variables. 3. The Method of Least	
Squares.	
§7. The Existence of an Extremum. Dirichlet's Principle	366

CONTENTS

1. General Remarks. 2. Examples. 3. Elementary Extremum Prob-	
lems. 4. Difficulties in Higher Cases.	373
80 Extremum Problems with Boundary Conditions. Connection Between Stei-	010
ner's Problem and the Isoperimetric Problem	376
810. The Calculus of Variations	379
1. Introduction. 2. The Calculus of Variations. Fermat's Principle in Op-	
tics. 3. Bernoulli's Treatment of the Brachistochrone Prob-	
lem. 4. Geodesics on a Sphere. Geodesics and Maxi-Minima.	
§11. Experimental Solutions of Minimum Problems. Soap Film Experiments	385
1. Introduction. 2. Soap Film Experiments. 3. New Experiments on Pla-	
teau's Problem. 4. Experimental Solutions of Other Mathematical Prob-	
lems.	000
CHAPTER VIII. THE CALCULUS	398
	398
§1. The Integral	099
Concept Concerl Definition 4 Examples of Integration Integration of	
x^* 5 Rules for the "Integral Calculus"	
82 The Derivative	414
1. The Derivative as a Slope 2. The Derivative as a	
Limit. 3. Examples. 4. Derivatives of Trigonometrical Func-	
tions. 5. Differentiation and Continuity. 6. Derivative and Veloc-	
ity. Second Derivative and Acceleration. 7. Geometrical Meaning of the	
Second Derivative. 8. Maxima and Minima.	
§3. The Technique of Differentiation	427
§4. Leibniz' Notation and the "Infinitely Small"	433
§5. The Fundamental Theorem of the Calculus	436
1. The Fundamental Theorem. 2. First Applications. Integration of x^r ,	
$\cos x$, $\sin x$. Arc $\tan x$. 3. Leibniz Formula for π	149
§6. The Exponential Function and the Logarithm Euler's Number a 2 The	442
1. Definition and Properties of the Logarithm. Easier's Number e. 2. The Exponential Function 3 Formulas for Differentiation of $e^x a^x$	
x^{s} 4 Explicit Expressions for $e e^{x}$ and log x as Limits 5. Infinite Series	
for the Logarithm. Numerical Calculation.	
87. Differential Equations	453
1. Definition. 2. The Differential Equation of the Exponential Func-	
tion. Radioactive Disintegration. Law of Growth. Compound Inter-	
est. 3. Other Examples. Simplest Vibrations. 4. Newton's Law of	
Dynamics.	
Supplement to Chapter VIII.	462
§1. Matters of Principle	462
1. Differentiability. 2. The Integral. 3. Other Applications of the Con-	
cept of Integral. Work. Length.	
§2. Urders of Magnitude	469
1. The Exponential Function and Powers of x . 2. Under of Magnitude of log (a)	
$\log(n!)$.	

83 Infinite Series and Infinite Products	
1 Infinite Series of Functions 2 Euler's Formula $\cos r + i \sin r =$	
e^{ix} 3 The Harmonic Series and the Zeta Function Euler's Product for	
the Sine	
84 The Prime Number Theorem Obtained by Statistical Methods	
CHAPTED IX RECENT DEVELOPMENTS	
81 A Formula for Primes	
82 The Goldbach Conjecture and Twin Primes	
82. Format's Last Theorem	
84 The Continuum Hypothesis	
85. Sat Theoretic Notation	
86. The Four Color Theorem	
87 Housdorff Dimonsion and Fractale	
88 Knots	
80. A Drohlom in Machaniac	
§9. A FIODIem in Mechanics	
§10. Steller STroblem	
§11. Soap Finns and Minimal Surfaces	
4 DEPUDIC SUDDI EMENTADY DEMADYS DOOD EME AND EVED CRES	
Arithmatic and Algebra	
Anumeuc and Algebra.	
Analytic Geometry	
Designifier and Non Evalidean Commetry	
Topology	
Functions Limits and Continuity	
Functions, Limits, and Continuity	
The Calculus	
SUGGESTIONS FOR FURTHER READING	
DUGGESTIONS FOR ADDITIONAL READING	
INDEX	