1

About This Publication and the JAEA Organizational Outline

Research and Development Related to the Accident at TEPCO's Fukushima Daiichi NPS

Highlight	Assistance in Environmental Restoration and Decommissioning	12
1-1	Degradation of Fuel Debris Under the Effect of Ionizing Radiation – Formation of Solid Solution Improves Stability to Oxidative Degradation – Yuta Kumagai	14
1-2	Criticality Evaluation of Fuel Debris with Unclear Material Composition – Development of a New Subcritical Depletion Code for Monitoring Noble Gases – Eka Sapta Riyana	15
1-3	Clarifying the Failure Mechanism of the Lower Part of the RPV – Melting Test Assuming a Eutectic Reaction in the Complex Structure of a BWR – Takuya Yamashita	16
1-4	How to Effectively Remove lodate from Solutions? – Coprecipitation of lodate with Barite (BaSO ₄) Was Evaluated at a Molecular Level – Kohei Tokunaga	17
1-5	Characterization of Radioactive Waste for Safe Storage – Effect on the Chemical Composition of Carbonate Slurry – Takuma Horita	18
1-6	Realization of γ-Ray Nuclide Analysis Under Severe Radiation Fields – Development of a γ-Ray Spectrometry System Specific to High Dose Rates for Simple Nondestructive Assays – Masaaki Kaburagi	19
1-7	In-situ Monitoring System for Radioactive Aerosols – Real-Time Monitoring of Alpha Aerosols to Improve Worker Safety – Youichi Tsubota	20
1-8	Simultaneous Measurement of the Energy Spectra of Alpha, Beta, and Gamma Rays – Development of a Portable Continuous Air-Monitoring System for Detecting Alpha/Beta/Gamma Radioactive Material – Yuki Morishita	21
1-9	Novel Single-End Readout-Type Optical Fiber Radiation Sensor – Highly Sensitive Position Detection by Photon Wavelength Analysis Using a New Spectroscopy System – Yuta Terasaka	22
1-10	Visualization of Radioactive Contamination at the Decommissioning Site on a Three-Dimensional Map – Understanding Invisible Radioactive Contamination in a Virtual Space and Reducing Worker Exposure – Yuki Sato	23
1-11	Impact of Extreme Typhoons on Radiocesium Discharge – Comparison of Effects of Two Typhoons–Etau in 2015 and Hagibis in 2019 – Takahiro Nakanishi	24
1-12	Approaching the Secrets of Long-Term Cesium Retention in Lichen – Computational Chemistry Solves the Energetics of Complexation of Metabolites with Cesium – Masahiko Machida	25

1-13	Rapid Analysis for Long Half-Life ⁹⁹ Tc – ICP-MS Analysis with Solid-Phase Extraction and Gas-Phase Reaction – Makoto Matsueda	26
1-14	Selective Detection of Trace Sr Isotopes Using Lasers – Simplified Pretreatment of Samples Containing Isobars and Stable Isotopes – Yoshihiro Iwata	27
1-15	Toward Confident Hot-Spot Visualization Using an Unmanned Helicopter – Improvement of Detection Accuracy by Selecting Data on the Flight Conditions – Yoshiaki Shikaze	28
1-16	Research on the Decreasing Trend of Atmospheric Radiocesium Concentration After the Accident – Assessing the Decrease Rate Based on Governmental Monitoring Results – Tomohisa Abe	29
1-17	Why Does the Air Dose Rate in Urban Areas Decline Quickly? – Reduction Effect Revealed by the Behavior of Radioactive Cesium – Kazuya Yoshimura	30

2 **Research on Nuclear Safety and Emergency Preparedness**

Highlight	Implementing Continuous Improvements in Safety and Emergency Preparedness	31
2-1	Understanding Reactor Risk Profiles Against External Events – Probabilistic Assessment of Internal Flooding-Induced Risks by a Dynamic Approach – Kotaro Kubo	32
2-2	Understanding Containment Vessel Flow During Severe Accident – Mass Transport Behavior Depending on the Relative Location of Outer Cooling and Initial Stratification – Satoshi Abe	33
2-3	Fuel Debris Form Prediction in a Severe Accident – Measurements of Mass Fractions of Agglomerated Debris Settled on the Floor of a PCV – Yuzuru Iwasawa	34
2-4	Parameter Determination for Assessing the Sheltering Effectiveness in Japanese Houses — Obtaining Data on Penetration Factor and Deposition Rate of Particulate and Elementary Iodine by Real House and Chamber Experiment — Jun Hirouchi	35
2-5	How Much Can Nuclear Piping Withstand Huge Earthquakes – Development of Seismic Fragility Evaluation Method for Aged Piping – Yoshihito Yamaguchi	36
2-6	A Path Toward Recycling and Landfill of Asbestos Waste Arising from Decommissioning – Development of Evaluation Method for Exposure Dose by Cleared Asbestos Waste – Taro Shimada	37

3 Advanced Scientific Research

Highlight	Fundamental Sciences to Realize the New Era of Nuclear Science and Technology	38
3-1	What is the Chemical Behavior of the Heaviest Element? – A Small Breach of the Periodic Law Found in the Volatility of Element 105, Dubnium – Tetsuya K. Sato	39
3-2	Probing the Strong Interaction with Superconducting Detectors – Drastic Precision Improvement in the X-Ray Spectroscopy of Kaonic Atoms – Tadashi Hashimoto	40
3-3	Slow Dynamics of Electrons in Uranium Compounds – Approaching the Mystery of Superconductors Leading to Quantum Computers – Yo Tokunaga	41
3-4	Topology-Based Manipulation of Magnets in Spintronics – New Principle for Power Saving in Magnetic Memories – Yasufumi Araki	42
3-5	Insight into Designing Highly Efficient Ortho-Para Hydrogen Conversion Catalysts – Demonstration of Fast Ortho-Para Conversion of H ₂ on a Stepped Surface – Hirokazu Ueta	43
3-6	Unveiling the Retention Mechanisms of Uranium (VI) on Host Rocks – Surface Sorption Process Related to Two Types of Sorption Species – Huiyang Mei	44
3-7	Towards Understanding the Coherent Properties of Bosons – Determination of the Josephson Current in a Bose–Einstein Condensate – Shun Uchino	45

4 **Nuclear Science and Engineering Research**

Highlight	Fundamental Technologies for Nuclear Energy Innovation	46
4-1	Development of a Low-Cost Transportable Device for Detecting Nuclear Materials – Successful Experimental Demonstration of a New Nondestructive Method – Masao Komeda	47
4-2	Connecting Nuclear Data with Transport Calculation – Development of Nuclear Data Processing Code FRENDY Version 2 – Kenichi Tada	48
4-3	Unveiling the Mystery of the Radiation Damage that Does Not Follow the Conventional Theory – Radiation Damage Mechanism in Ceramics Irradiated with Swift Heavy Ions – Norito Ishikawa	49

CONTENTS

4-4	Detailed Radioactive Plume Dispersion and Dose Calculations Considering Buildings in Local Areas – Development of a Local-Scale High-Resolution Atmospheric Dispersion and Dose Assessment System – Hiromasa Nakayama	50
4-5	Nuclear Fuel Cycle Simulator NMB4.0 Released — Development of Fast, Versatile, and Flexible NMB4.0 to Contribute to the Planning of Future Nuclear Energy Utilization Strategies — Kenji Nishihara	51
4-6	Toward the Realization of a Reliability-Oriented Accelerator for the Accelerator-Driven System – Robust Beam Optics Design of a 30-MW LINAC for Nuclear Transmutation – Bruce Yee-Rendon	52
4-7	Improving Adsorption Capacity for Medical Radioisotopes – Elucidation of Molybdate Ion Adsorption Mechanism in Alumina – Yoshitaka Fujita	53

5 Neutron and Synchrotron Radiation Research

Highlight	Contributions to Innovative Achievement in Science and Technology	54
5-1	Beam Measurement Using Light Produced by Beam-Gas Interaction – Development of a Gas Sheet Beam Profile Monitor – Ippei Yamada	55
5-2	Acceleration of Neutron Measurement by Deep Learning – Over 10-Fold Acceleration of Neutron Reflectometry Measurement by an Accurate Noise Reduction Method – Hiroyuki Aoki	56
5-3	Wide Bandwidth Neutron-Spin Polarizer – A Breakthrough in Neutron-Polarizing Supermirror with Very High Critical Momentum Transfer – Ryuji Maruyama	57
5-4	Discovery of Coupled Fluctuations with Protein Domain Structures and Active Sites – Analysis of Protein Dynamics by Neutron Scattering and Molecular Simulation – Hiroshi Nakagawa	58
5-5	Development of Nuclear Vitrification by Neutron Scattering – Nanoscopic Structure of Borosilicate Glass with Additives – Ryuhei Motokawa	59
5-6	Fabrication of Environment-Friendly Piezoelectric Materials – Local Structural Analysis of Bi _{0.5} Na _{0.5} TiO ₃ in the High-Temperature Phase – Yasuhiro Yoneda	60
5-7	How Heavy Electrons are Formed in Eu-Based Compounds — Direct Observation of the Band Structure of Eu 4f Orbitals, Which Have Magnetic and Localized Characteristics, by Synchrotron Radiation Experiments — Ikuto Kawasaki	61

6 HTGR Hydrogen and Heat Application Research

Highlight	Research and Development on HTGR, Hydrogen I Technologies
6-1	New Seismic Classification of the HTTR – Appropriate Seismic Classification Based on Technical K Masato Ono
6-2	Challenge to Measure the Power Distribution in Very- – Development of a Power Distribution Measurement Method Us Yuji Fukaya
6-3	For Reducing the Cost of Construction of High-Tem – Development of Cesium Trap Material for Coated Fuel Pa Jun Aihara
6-4	Upgrading H ₂ Production Efficiency in the IS Proces – Corrosion Stability Improvement of the H ₂ Separation Me Odtsetseg Myagmarjav
6-5	Achievement of Longer-Term H₂ Production in IS Pr – Introduction of a Novel Operating Procedure Using a Clo Nobuyuki Tanaka
6-6	Development of a Novel RPV Cooling System for HT – Comparison of the Structural Differences Between RPV Cooling Systems Kuniyoshi Takamatsu
6-7	Toward More Accurate Core Analysis of High-Tempe – Development of a Core Analysis Method with Specified C Shoichiro Okita
7	Research and Development of Fa
Highlight	Development of the Technology Base and Infrastru Reactor Cycle
7-1	Fast Simulation Method for Chemically Reacting Flo – Efficient Numerical Simulation for Developing New-Gene

Highlight	Development of the Technology Base and Infrastructure Toward Improving the Fast Reactor Cycle	70
7-1	Fast Simulation Method for Chemically Reacting Flows – Efficient Numerical Simulation for Developing New-Generation Nuclear Plants – Wataru Kosaka	71
7-2	Understanding Aerosol Behavior in Fast Reactor Accidents – Test on Aerosol Transport Behavior Using the MET Facility – Ryota Umeda	72
7-3	Failure Prediction of Fast Reactor Components – Cyclic Loading Test and Failure Prediction of Multiperforated Plates – Masanori Ando	73

CONTENTS

Production, and Heat Application	62
Knowledge and Operation Experience –	63
-High-Temperature Core Environments sing Neutrons Leaked from an HTGR Core –	64
nperature Gas-Cooled Reactors Particles –	65
ss Iembrane for HI Decomposition –	66
rocess osed-Loop System –	67
TGRs s and Effects of External Parameters on RPV Cooling –	68
erature Gas-Cooled Reactors Graphite Porosities –	69

Fast Reactors

7-4	Capturing the Oxygen Diffusion Phenomena in Nuclear Fuel – Measurement and Evaluation of the Oxygen Self-Diffusion Coefficient of MOX Fuel – Masashi Watanabe	74
7-5	Development of Fast Reactor Fuel for Reduction of Radioactive Waste – Evaluation of Thermal Conductivity of High Am-Bearing Mixed Oxide Fuel on Stoichiometry – Keisuke Yokoyama	75
7-6	Evaluation of Experiments in the Prototype Fast Reactor Monju – Solving Discrepancy Between Measurement and Calculation – Kazuya Ohgama	76
7-7	Toward Realization of Advanced MOX Fuels - Measurement of Slight Variations in the Oxygen Content of Fuels – Shun Hirooka	77

8 Research and Development on Fuel Reprocessing, Decommissioning, and Radioactive Waste Management

Highlight	Toward Decommissioning Nuclear Facilities and Managing Radioactive Waste	78
8-1	Toward the Design of the Disposal Facilities Considering the Environmental Standards – Change in Uranium Concentration in Groundwater Depending on the Facility Layout and Structure – Rina Ogawa	80
8-2	Establishment of a Treatment Method for Nuclear Fuel Material for Safe Storage – Stabilization Treatment of Nuclear Fuel Material Containing Organic Compounds – Kohei Tada	81
8-3	Toward Stabilization of Hazardous and Radio-Active Wastes – Characterization of Lead Stabilized with Alkali-Activated Material – Junya Sato	82
8-4	Coating Removal Technique for Painted Steel Surface – Performance Evaluation of Laser Cleaning – Ikumi Yamane	83
8-5	Decommissioning of a Facility with a History of Contamination Caused by a Fire Disaster in a Controlled Area – Collective Dismantling of the Uranium Enrichment Laboratory Using a Large Isolation Tent – Junya Kokusen	84
8-6	Dismantling a Tank Containing Liquid with α Nuclides – Exposure Reduction Measures and Acquisition of Work Data for Future – Yuta Yokozuka	85
8-7	New Method to Observe Fault Displacement Using a Conventional Device – Significant Progress Toward Greatly Enhanced Underground Utilization – Eiichi Ishii	86
8-8	Prediction of the Low-Permeability Domain in Soft Rock – Estimation of the Effective Hydraulic Conductivity by Hydromechanical Simulation – Yusuke Ozaki	87

8-9	Discriminating Tephra with Similar Chemical Compositions – Development of a Method for the in Situ Chemical Composition Analysis of Volcanic Glasses – Saya Kagami	88
8-10	Prediction of Radionuclide Migration by a Thermodynamic Sorption Model – Assessing the Impact of the Transition of Repository Condition on Radionuclide Migration – Yuki Sugiura	89
8-11	Migration Behavior of Carbon-14 in Buffer Material – Diffusion Experiments of Carboxylic Acid and Alcohol in Compacted Bentonite – Takamitsu Ishidera	90

9 Computational Science and E-Systems Research

Highlight	Computational Science for Nuclear Research and Development	91
9-1	Deep-Learning Model for High-Resolution Steady Flow Prediction – Convolutional Neural Networks for Multiresolution Steady Flow Prediction – Yuichi Asahi	92
9-2	Acceleration of Multiscale Fluid Simulation on GPU Supercomputer – Communication Reducing Method for Local Mesh Refinement – Yuta Hasegawa	93
9-3	Detecting the Quantum Fluctuation of Water – High-Precision Calculations of Water Using the General-Purpose Molecular Simulation Code PIMD – Motoyuki Shiga	94
9-4	Clarification of the Fundamental Properties of Radium — Ab Initio Molecular Dynamics Simulations and Extended X-Ray Absorption Structure Measurements Revealed the Hydration Structure of Barium — Akiko Yamaguchi	95

10 Development of Science & Technology for Nuclear Nonproliferation

Highlight	Development of Technology and Human Capacity Building in the Fields of Nuclear Nonproliferation and Nuclear Security to Support the Peaceful Use of Nuclear Energy	96
10-1	Development of a Compact Nondestructive Analysis System for Measuring Nuclear Material – Demonstration of Neutron Resonance Transmission Analysis System Using a Laser-Driven Neutron Source – Kota Hironaka, Jaehong Lee	97

CONTENTS