CONTENTS

1	The magnetohydrodynamics equations					
	1.1	.1 The general fluid equations				
		1.1.1 The conservation equations	1			
		1.1.2 Boundary and initial conditions	6			
		1.1.3 Steady-state equations	7			
	1.2	The electromagnetic description	8			
	1.3	The MHD coupling	11			
		1.3.1 The general MHD system	11			
		1.3.2 A commonly used simplified MHD coupling	13			
		1.3.3 The density-dependent case	14			
	1.4	Other MHD models	14			
	1.5	The MHD system considered in the sequel	15			
	1.6	Non-dimensionalized equations	18			
2	Ma	thematical analysis of one-fluid problems	21			
	2.1	Mathematical results on the incompressible				
		homogeneous Navier–Stokes equations	24			
		2.1.1 Some basics	25			
		2.1.2 The illustrative example of the two-dimensional				
		case	39			
		2.1.3 The three-dimensional hydrodynamic case	49			
		2.1.4 Related issues	54			
	2.2	Mathematical results on the one-fluid MHD equations	56			
		2.2.1 A brief overview of the literature	57			
		2.2.2 Mathematical analysis	58			
		2.2.3 Back to the hyperbolic system	63			
		2.2.4 Stationary problems	64			
		2.2.5 A hybrid problem	74			
		2.2.6 Other MHD models and formulations	80			
3	Nu	merical approximation of one-fluid problems	83			
	3.1	A general framework for problems with constraints	83			
		3.1.1 A model problem: the Stokes equations	84			
		3.1.2 Abstract framework for a linear problem	85			
		3.1.3 Application to the Stokes problem	88			
		3.1.4 The inf-sup condition	88			
		3.1.5 The mixed Galerkin method	91			
		3.1.6 Algebraic aspects	92			

CONTENTS

		3.1.7	Mixed finite element for the Stokes problem	93
		3.1.8	Extension to nonlinear problems	95
	3.2	3.2 A glance at stabilized finite elements		
	3.3	Mixed	l formulations of the stationary MHD equations	100
		3.3.1	A formulation for convex polyhedra and regular	
			domains	101
		3.3.2	A formulation for non-convex polyhedra	108
	3.4	Mixed	l finite elements for MHD	115
		3.4.1	Mixed finite elements on convex polyhedra and	
			regular domains	116
		3.4.2	Mixed finite elements on non-convex polyhedra	117
	3.5	Stabil	119	
	3.6	Soluti	on strategy and algebraic aspects	127
		3.6.1	Fully coupled iterations for stationary problems	127
		3.6.2	Decoupled iterations for stationary problems	129
		3.0.3	MID www. Navian Stakes salars	131
	97	3.0.4	MHD versus Navier-Stokes solvers	131
	3.1	Exam	Hertmann flows	132
		3.7.1 979	A fluid corruing current in the procence of a mag	100
		3.1.2	A find carrying current in the presence of a mag-	136
		373	Convergence of nonlinear algorithms	130
	3.8		t the boundary conditions	140
	J .0	381	First set of boundary conditions	140
		382	Second set of boundary conditions	142
		3.8.3	Practical implementation of the boundary con-	110
		0.0.0	ditions	144
4	Ma	thema	atical analysis of two-fluid problems	145
	4.1	The d	lifficulties of the non-homogeneous case	146
		4.1.1	A formal mathematical argument	147
		4.1.2	The major ingredient	148
		4.1.3	Short overview of the state of the art for the	
			hydrodynamic case	153
	4.2	Weak	solutions of the multifluid MHD system	154
		4.2.1	Mathematical setting of the equations	154
		4.2.2	Existence of a weak solution	156
	4.3	On th	e long-time behavior	168
		4.3.1	The nonlinear hydrodynamics case	169
		4.3.2	A detour by linearized models	179
		4.3.3	The MHD case	183
5	\mathbf{Nu}	merica	al simulation of two-fluid problems	185
	5.1	Nume	erical approximations in the ALE formulation	186
		5.1.1	Weak ALE formulation	187

	5.1.2	Time and space discretization	198
	5.1.3	Geometric conservation law, stability and	100
		conservation properties	204
	5.1.4	Surface tension effects	215
5.2	Other	approaches	220
	5.2.1	Fixed-mesh methods	221
	5.2.2	Moving-mesh methods	223
5.3	Exam	ple of test cases and simulations	224
	5.3.1	A benchmark problem with a free surface	224
	5.3.2	On the discrete mass conservation	225
	5.3.3	An MHD experiment with a free surface and a	
		free interface	227
6 M	HD mo	odels for one industrial application	233
6.1	Prese	ntation of aluminum electrolysis	233
	6.1.1	The electrolysis process	233
	6.1.2	Questions of stability and efficiency of the cell	236
	6.1.3	The magnetohydrodynamic modeling of the cell	238
	6.1.4	Qualitative interpretation of MHD instability and	
		the Sele criterion	240
6.2	Linea	rized approaches	243
	6.2.1	Basic assumptions	244
	6.2.2	A prototypical derivation of a linearized system	248
	6.2.3	Analysis of a single Fourier mode and dispersion	
		relations	256
	6.2.4	Taking into account the boundaries: analysis of	
		coupling of standing plane waves	259
	6.2.5	Numerical computations of the eigenvalues around	
		a precomputed stationary state	267
6.3	A nor	nlinear approach	272
	6.3.1	Generalities about linear versus nonlinear	
		approaches	272
	6.3.2	Some experiments on realistic cells	274
	6.3.3	Metal pad roll instabilities	278
	6.3.4	Spectral analysis	282
6.4	Other	nonlinear approaches and conclusions	284
Refere	ences		287
Index			303

 \mathbf{x}

xi