Contents

Pr	eface			xv	
9.	HIERARCHICAL THEORY OF UNDULATIVE INDUCTION ACCELERATORS (EH-ACCELERATORS)				
	1	EH-A	CCELERATORS: GENERAL IDEAS	2	
		1.1 1.2	Principles of Operation of EH-Accelerators Comparison of Charged Particle Motions in	$\frac{2}{2}$	
			EH-Undulated Fields	5	
		1.3	Example of the EH-Field Presentation	7	
	2	EH-A OSCII	CCELERATOR AS A HIERARCHICAL LLATIVE SYSTEM	11	
		2.1	Oscillations and Quasi-Resonances	11	
		2.2	Hierarchy of Oscillations	17	
	3	MOTI NON- EH-A	ON OF CHARGED PARTICLES IN THE STATIONARY LINEARLY POLARIZED CCELERATOR	21	
		3.1	Analytical Solutions of the Problem of Particle Motion	21	
		3.2	Effect of Electron Reflection from the System Input	24	
		3.3	Effect of a Particle's Capture	27	
	4	PICO	SECOND ELECTRON BUNCH FORMERS	32	
		4.1	Motion of an Electron Bunch in a Non-Stationary EH-System	32	
		4.2	Example of the EH-Former for Picosecond Electron Bunches	37	

HIERARCHICAL METHODS

5	STATI	IONARY EH-ACCELERATORS	39
	5.1	Elementary Theory of the Stationary Linearly	
		Polarized EH-Accelerators	39
	5.2	Inhomogeneous One-Particle Models	45
6	EXAN STATI	IPLE: PROJECT OF AN ESPECIALLY COMPACT IONARY EH-ACCELERATOR	52
	6.1	One of Possible Applications: the E-Beam Sterilizers	52
	6.2	Example: the EH-accelerator for Waste and Natural Water Purification Systems	53
7	THE E BEAM	EFFECT OF 'COOLING' OF CHARGED PARTICLE IS IN EH-ACCELERATORS	59
	7.1	The Cooling Effect and the Fundamental Principles of Physics	59
	7.2	Essence of the Cooling Effect	60
	7.3	Homogeneous Non-Stationary Model	61
	7.4	Inhomogeneous Non-Stationary Models	67
8	STATI	ONARY EH-COOLERS	70
	8.1	Undulative Electric and Magnetic Fields in Stationary EH-Coolers	70
	8.2	Single Particle Theory of the Linearly Polarized Stationary EH-Cooler	73
	8.3	Optimization of the Stationary EH-Cooler	79
	8.4	Inhomogeneous Model of the Stationary EH-Cooler	82
10. FRE DEV	E ELEO VICE W	CTRON LASERS AS A CLASSICAL ELECTRON TTH A LONG-TIME INTERACTION	89
1	FREE	ELECTRON LASERS: GENERAL	
	INFO	RMATION	89
	1.1	Place of the Free Electron Lasers in Modern	
		Electronics	89
	1.2	Priority Problem	91
	1.3	Basic Physical Mechanisms and the First Theoretical Design	92
	1.4	The First Realized Designs of Free Electron Lasers 1	104
2	GROU ELEC	PING (BUNCHING) MECHANISMS IN FREE	107
	2.1	Longitudinal Grouping Mechanism	107
	2.2	Transverse Grouping (Bunching) Mechanism	114
	2.3	Energy Transfer in the System	
		'Beam+Pumping+Signal'	115

vi

11. HII	ERARC	CHICAL SINGLE-PARTICLE THEORY OF	
\mathbf{FRI}	EE ELI	ECTRON LASERS	123
1	GEN THE	ERAL APPROACH TO THE SINGLE-PARTICLE ORY OF FREE ELECTRON LASERS	124
	1.1	Method of Simulated Magneto-Dielectric	124
	1.2	Types of Modeling Pumping Fields	130
	1.3	Electron Motion in the Field of Electromagnetic Waves. Integrals of Motion	132
	1.4	Reducing Initial Equations to the Standard Form	136
	1.5	Classification of Models	138
	1.6	Case of a Weak Magnetic Field	139
2	SING LASE	LE-PARTICLE THEORY OF THE FREE ELECTR ERS OF DOPPLERTRON TYPE	ON 142
	2.1	Obtaining the Equations of the First Hierarchical	
		Level	142
	2.2	Passing to the H-Ubitron Model	144
	2.3	'Efficiency-Phase' Variables	145
	2.4	Model with the Optimal Electrostatic Support	146
	2.5	Model with the Optimal Variation of the Retardation Factor	on 148
	2.6	Some Approximate Analytical Solutions	149
	2.7	Model with the Two-Frequency Pumping	150
3	THE ELEC	SINGLE-PARTICLE THEORY OF THE FREE CTRON LASER WITH EH-PUMPING	154
	3.1	Fields and Problem Formulation	154
	3.2	Resonant Conditions	155
	3.3	Truncated Equations in the Case of a Weak Magnetic Field	156
	3.4	Truncated Equations in the Case of a Coupled Parametric-Cyclotron Resonance	158
	3.5	Isochronous Models. The Case of a Super-Weak Magnetic Field	159
	3.6	Simplified Multi-Particle Theory of the EH Free Electron Laser	161

vii

12. HIE FRE	CRARCE DE ELE	HICAL SELF-CONSISTENT THEORY OF CTRON LASERS	169
1	GENE	RAL FORMULATION OF THE PROBLEM	170
	1.1	General Arrangement	170
	1.2	Fields and Resonances	170
	1.3	Electric Support	172
	1.4	Parametric Free Electron Laser as a Hierarchical	
		Oscillative System	172
	1.5	Motion Problem	173
	1.6	Self-Consistent Problem	174
2	SELF- SIMPI VARY	CONSISTENT TRUNCATED EQUATIONS. LIFIED VERSION OF THE METHOD OF SLOWL' ING AMPLITUDES	Y 175
	2.1	Statement of the Problem	176
	2.2	Initial Equations	176
	2.3	Truncated Equations in the Complex Form	177
	2.4	Truncated Equations in the Real Form	180
	2.5	Integrals of Motion	181
	2.6	Raman and Compton Modes	182
3	SELF- METH	CONSISTENT TRUNCATED EQUATIONS. IOD OF THE AVERAGED KINETIC EQUATION.	109
	THE (CUBIC DOPPLERIRON MODEL	183
	3.1	Statement of the Problem	199
	3.2	Form with Total Derivatives	184
	3.3	Scalar Part of the Fields	184
	3.4	Current Density and Space Charge	185
	3.5	The Problem of Large Parameters	186
	3.6	Averaged Kinetic Equation	187
	3.7	Wave and Single-Particle Resonant Conditions	187
	3.8	Representation of the Distribution Function in the Form of a Fourier Series	188
	3.9	Truncated Equations for the Slowly Varying Amplitudes of Distribution Function	188
	3.10	Solving the Truncated Equation by Successive Approximations	190
	3.11	Back Transformation	192
	3.12	Maxwell's Equations	193
	3.13	Truncated Equations for the Wave Amplitudes	194
	3.14	Raman and Compton Interaction Modes	196

viii

4	SELF- METH	CONSISTENT TRUNCATED EQUATIONS. THE IOD OF THE AVERAGED KINETIC EQUATION.	107
	THE	CUBIC NONLINEAR H-UBITRON MODEL	197
	4.1	Formulation of the Problem	197
	4.2	Three-Level Hierarchical Calculational Scheme	198
	4.3	Double-Averaged Kinetic Equation	200
	4.4	Solutions of the Double-Averaged Kinetic Equation	200
	4.5	Back Transformation on the First Hierarchical Level	201
	4.6	Truncated Equations for the Complex Wave Amplitudes	203
	4.7	Simplified Version of the Truncated Equations	204
5	SELF- THE M THE C WITH ELEC	CONSISTENT TRUNCATED EQUATIONS. METHOD OF SLOWLY VARYING AMPLITUDES. QUADRATIC KINETIC DOPPLERTRON MODEL ARBITRARILY POLARIZATIONS OF THE TROMAGNETIC WAVES	205
	5.1	Formulation of the Problem	206
	5.2	Truncated Equations for the Wave Amplitudes	207
	5.3	Solving the Kinetic Equation by Successive	
		Approximations	208
	5.4	Again the Truncated Equations for Wave Amplitudes	210
	5.5	Stationary Version of the Truncated Equations for Wave Amplitudes	212
	5.6	Integrals of Motion	213
6	SELF- THE S	CONSISTENT QUADRATIC FEL THEORY OF SIMPLEST LINEARLY POLARIZED	
	QUAS	I-HYDRODYNAMIC MODEL	214
	6.1	Truncated Equations for the Simplest Model	214
	6.2	Case of the Given Pumping Field	214
	6.3	Case of Self-Consistent Changing of All Slowly Varying Amplitudes. Integration Algorithm	216
	6.4	The Case of Self-Consistent Changing of All Slowly Varying Amplitudes. The Boundary Conditions Problem	219
	6.5	The Case of Self-Consistent Changing of All Slowly Varying Amplitudes. The Solutions	219
	6.6	The Case of Self-Consistent Changing of All Slowly Varying Amplitudes. The Passage to the	000
		Approximation of a Given Pumping Field	220

Contents

7	ANAL	YSIS OF THE WAVE RESONANT CONDITIONS	221
	7.1	The Model of a Cold Electron Beam	221
	7.2	ADE Interaction Modes in the Dopplertron FEL	222
	7.3	Passing to the Case of the H-ubitron Model	224
	7.4	Dopplertron Models with Retarded Pumping	224
	7.5	Role of the Thermal Electron Beam Spread	226
8	SELF- THE THE A IN TH	CONSISTENT QUADRATIC FEL THEORY OF ARBITRARY POLARIZED KINETIC MODEL. APPROXIMATION OF A GIVEN PUMPING FIELI E CASE OF THE RAMAN MODE) 227
	8.1	Types of Instabilities which Are Possible in the Dopplertron FELs	227
	8.2	Boundary Conditions	228
	8.3	Solutions	228
	8.4	Threshold of Interaction	229
	8.5	Passage to the H-Ubitron Model	230
	8.6	Phase Effects	230
	8.7	Polarization Effects	231
	8.8	The Effects of Phase and Polarization	
		Discrimination	233
	8.9	The Role of the Pumping Wave Retardation in the Amplification Process	237
9	SELF- THE A THE A	CONSISTENT QUADRATIC FEL THEORY OF ARBITRARILY POLARIZED KINETIC MODEL. APPROXIMATION OF THE GIVEN PUMPING	
	FIELD) IN THE CASE OF COMPTON MODE	238
	9.1	Truncated Equations	238
	9.2	Boundary Conditions	239
	9.3	Solutions	239
	9.4	Phase and Polarization Effects	241
10	SELF- THE E	CONSISTENT QUADRATIC FEL THEORY. EXPLOSIVE INSTABILITY IN THE LINEARLY RIZED RAMAN MODEL	949
	101A	Classification of the Self-Consistent Modes of	242
		Interaction	243
	10.2	Truncated Equations. The Cold Linearly Polarized Dopplertron Model	244
	10.3	Classification of Models with Explosive Instability	245
	10.4	Analysis of the Synchronous Conditions (Kinematic Analysis)	245
	10.5	Amplitude Analysis	246

	10.6	Case of Degeneration of the Wave Frequencies	248
	10.7	The Influence of Dissipation for the SCW	250
11	SELF- EXPL POLA	CONSISTENT QUADRATIC FEL THEORY. THE OSIVE INSTABILITY IN THE ARBITRARILY RIZED SELF-CONSISTENT RAMAN MODEL	251
	11.1	Truncated Equations in the Real Form	251
	11.2	Motion Integrals	252
	11.3	Functions $u(z)$ and $R(z)$	252
	11.4	Nonlinear Potential	253
	11.5	Analytical Solutions	253
	11.6	Explosive Length	256
	11.7	Polarization Effects	256
	11.8	Explosive Instability in the Linearly Polarized Self-Consistent Compton Model	259
12	THE S THE D POLA	SELF-CONSISTENT QUADRATIC FEL THEORY. EXPLOSIVE INSTABILITY IN LINEARLY RIZED SELF-CONSISTENT COMPTON	260
	10 1	The Compton Trungsted Equations	200
	12.1	Motion Integrals	201
	12.2	Frange	202
	12.0 12.4	Solutions	262
	12.1 12.5	Compton Critical Length	262
13	SELF- THE TRAN	-CONSISTENT QUADRATIC FEL THEORY OF EFFECT OF THE GENERATION OF THE ISVERSE H-UBITRON FIELD	263
	13.1	Two Modes of the Effect of the Generation of	
		Additional Magnetic Field	264
	13.2	Wave Nonlinear Mechanism	265
	13.3	Diamagnetic Mechanism	266
14	THE THE THE	DOPPLERTRON CUBIC NONLINEAR MODEL. EFFECT OF NONLINEAR GENERATION OF LONGITUDINAL ELECTRIC FIELD	268
	14.1	Physical Nature of the Generated Longitudinal Electric Field	269
	14.2	Wave Efficiency	269
	14.3	Gain Factor	271
	14.4	Numerical Analysis	271

Contents

1	5	DOPP ISOCH AMPL	LERTRON CUBIC NONLINEAR MODEL. THE IRONOUS MODEL OF A DOPPLERTRON IFIER	274
1	6	H-UBI OF NC PERIC	TRON CUBIC NONLINEAR MODEL. THE EFFE ONLINEAR GENERATION OF THE TRANSVERS ODIC MAGNETIC FIELD	${f CT} {f E} {f 279}$
		16.1	Adapted System of Truncated Equations and Its Accuracy	280
		16.2	Generation of the Additional Improper H-Ubitron Fields	281
		16.3	Nonlinear Generation of the Proper H-Ubitron Fields	285
13. H S	HEI UPI	RARCH ERHEI	HICAL THEORY OF TWO-STREAM FERODYNE FREE ELECTRON LASERS	291
1		TWO-S LASEF	STREAM SUPERHETERODYNE FREE ELECTR RS AS A NEW CLASS OF RELATIVISTIC	ON
		ELEC.	TRON DEVICES	292
		1.1	History of the Problem and the Main Ideas	292
		1.2	(TSFEL): Design Schemas and Their Principles of Operation	295
		1.3	Analyzed Models	298
2		THEO	RY OF THE TWO-STREAM INSTABILITY	302
_		2.1	Initial Model. Statement of the Problem	303
		2.2	The Linear Approximation	304
		2.3	Nonlinear Approximation	308
		2.4	Analysis	311
3		THE E SUPEI	ESSENCE OF THE EFFECT OF TWO RHETERODYNE AMPLIFICATION	314
		3.1	Qualitative Comparison of the Parametric and Superheterodyne Mechanisms of Amplification	314
		3.2	Main Idea of the Effect of Superheterodyne Amplification	315
4		FORM TWO-	IULATION OF THE CUBIC NONLINEAR STREAM SUPERHETERODYNE PROBLEM	317
		4.1	Model and Fields	317
		4.2	Two-Stream Superheterodyne Free Electron Laser as a Hierarchical Wave–Oscillative System	319
		4.3	Quasi-Compton and Raman Interaction Modes	321

	4.4	Electric Support and the Effect of Nonlinear Generation of the Longitudinal Electric Field	323
	4.5	Motion Problem	324
	4.6	Concept of the Space Charge Waves in the Cases of Raman and Compton Modes	325
5	CUBI ANAI	C NONLINEAR TRUNCATED EQUATIONS AND	329
	5.1	Cubic Nonlinear Truncated Equations	329
	5.2	Amplification Dynamics	332
	5.3	Efficiency Dynamics	334
	5.4	Influence of the Effect of Nonlinear Generation of the Longitudinal Electric Field	335
	5.5	Influence of the Generated Magnetic Field	338
	5.6	Influence of Highest Harmonics and Longitudinal	
		Focusing Magnetic Field	341
	5.7	Klystron TSFEL Amplifiers	344
EPILOGUE		353	
Append	lices		354
App	endix A	L	355
App	endix E	3	359
App	endix C)	361
App	endix I)	363
App	endix E		365
App	endix F		367
Index			375

xiii

xii