Contents

Ac	know	vledgme	ents	xv
Preface				xvii
1.	GENERAL IDEAS, CONCEPTS, DEFINITIONS, AND OTHER PRELIMINARY INFORMATION			
	1	ESSE ANAI 1-1	NCE OF THE HIERARCHICAL CYTICAL-NUMERICAL METHODS One Illustrative Example	1
		1.1	of the Multi-Frequency Oscillation–Wave Systems	1
		1.2	Essence of the Hierarchical Approach	4
		1.3	Classification of the Hierarchical Methods Discussed in the Book	7
	2	BASIC OF T	C CONCEPTS AND DEFINITIONS HE OSCILLATION THEORY	
		OF W	'EAKLY NONLINEAR SYSTEMS	8
		2.1	Nonlinear Oscillations and Nonlinear Systems	9
		2.2	Hidden and Explicit Oscillation Phases	12
		2.3	Resonances	13
		2.4	Slowly Varying Amplitudes and Slowly Varying Initial Phases.	
			Complex Amplitudes	20
		2.5	Harmonic and Non-Harmonic Oscillations	21
	3	BASIC OF TI	C CONCEPTS AND DEFINITIONS HE THEORY OF WAVES	
		IN WI	EAK NONLINEAR SYSTEMS	23
		3.1	Definition of the Wave	23
		3.2	The Phase and Group Wave Velocities	24
		3.3	The Phase of a Wave	26

2.

	3.4	Transverse and Longitudinal Waves	26
	3.5	Surface and Volumetric Waves	27
	3.6	The Concept of Dispersion	27
	3.7	Waves with Negative, Zero and Positive Energy	28
4	OTH	ER BASIC DEFINITIONS AND	
	EQUA	ATIONS OF PHYSICS	29
	4.1	Linear Velocity and Linear Acceleration	29
	4.2	Linear Momentum and Force	29
	4.3	Curvilinear Motion	30
	4.4	Rotation	30
	4.5	Energy. Field of Forces	31
	4.6	Motion Integrals	32
	4.7	Canonical Variables. Hamiltonian Equations	33
	4.8	Electromagnetic Field	33
	4.9	Lagrange and Euler Variables	34
5	CONC	CEPT OF SYSTEM	35
	5.1	What is a System?	35
	5.2	State of the System	36
	5.3	General Classification of the Systems	36
	5.4	Some General Properties of Complex Systems	37
6	BASI	C POSTULATES AND PRINCIPLES	
	OF T	HE GENERAL SYSTEM THEORY	38
	6.1	Principle of Physicality	38
	6.2	Integrity postulate	39
	6.3	Autonomy Postulate	39
	6.4	Principle of Ability to Model	40
	6.5	Complementarity Postulate	40
	6.6	Action Postulate	41
	6.7	Uncertainty Postulate	41
	6.8	Purposefulness Principle	42
	6.9	Entropy and Negentropy	42
	6.10	Complexity	45
HIE	RARC	HY AND	
HIE	RARCI	HICAL SYSTEMS	49
1	BASI	C CONCEPTS OF THE THEORY	
-	OF H	IERARCHICAL DYNAMICAL SYSTEMS	49
	1.1	Why Does Nature Need Hierarchy?	49
	1.2	Two Approaches to the Theory	
		of Hierarchical Systems	50

Contents

3.

	1.3	Self-Modeling Principle	51
	1.4	Main Idea of the Hierarchical Method	52
	1.5	Again: What is Hierarchy Originally?	
		The Structural Hierarchy	53
	1.6	Dynamical Hierarchy	54
	1.7	Hierarchical Series in Dimensionless Form	58
2	HIERA HIERA	ARCHICAL PRINCIPLES. ARCHICAL DESCRIPTION	58
	2.1	Hierarchical Principles	58
	2.2	Dynamical Equation of the Zeroth Hierarchical Level	60
	2.3	Structural and Functional (Dynamical) Operators	62
	2.4	Classification of the Hierarchical Problems	64
	2.5	Hierarchical Tree	66
HIF	RARCH	HCAL ASYMPTOTIC	
ME	THODS	. GENERAL IDEAS	71
1	DETE	RMINED HIERARCHICAL SYSTEMS	72
	1.1	Determined Hierarchical Systems	72
	1.2	Averaging Operators	76
2	STOC	HASTIC HIERARCHICAL SYSTEMS	78
	2.1	Factors of Stochasticity in Dynamical Systems	78
	2.2	Example of Hierarchical Model of Stochastic System	79
3	WAVE	RESONANT HIERARCHICAL SYSTEMS	81
	3.1	Standard Hierarchical Equations in the Case of Hierarchical Wave Problem	82
	3.2	Classification of Problems	85
	3.3	Krylov–Bogolyubov Substitution	87
	3.4	Case b)	88
4	VAN E	DER POL'S METHOD	90
	4.1	A Few Introductory Words	90
	4.2	Van der Pol's Method's Variables	90
	4.3	Truncated Equations and Their Hierarchical Sense	92
5	METH	ODS OF AVERAGING. STANDARD VERSION	95
	5.1	Bogolyubov's Standard System	95
	5.2	The Problem of Secular Terms	99

vii

	6	METH TWO- SLOW	HODS OF AVERAGING. LEVEL SYSTEMS WITH / AND FAST VARIABLES	100
		6.1	Two-Level Systems with Slow and Fast Variables. General Case	100
		6.2	Two-Level Systems with Fast Rotating Phases	102
4.	HIE WIT	RARCI TH FAS	HICAL SYSTEMS T ROTATING PHASES	107
	1	HIER	ARCHICAL OSCILLATIONS	107
		1.1	A Few Introductory Words	107
		1.2	Formulation of the Hierarchical Single-Particle Electrodynamic Problem	109
		1.3	Classification of Oscillatory Phases and Resonances. Hierarchical Tree	112
		1.4	Reducing Hierarchical Multi-Level Standard System to the Two-Level Form. The Scheme of Hierarchical Transformations	117
	2	THE C SYSTI	CASE OF SIMPLEST TWO-LEVEL EM WITH ONE ROTATING AB PHASE	119
		2 1	Formulation of the Problem	110
		2.1	Algorithm of Asymptotic Integration	190
		2.2	Accuracy of Approximate Solutions	120
		2.4	Asymptotic Integration of Initial Equations by Means of Successive Approximations	121
		2.5	Peculiarities of Asymptotic Hierarchical Calculational Schemes Based on the Fourier Method	190
	9	CACE		120
	3	CASE	OF TWO FAST ROTATING SCALAR PHASES	130
		3.1 2.0	Formulation of Problem	130
		ა.∠ ეე	Solutions. Non-Resonant Case	131
	4		Solutions. Resonant Case	134
	4	THE	CASE OF MANY ROTATING SCALAR PHASES	139
		4.1	Formulation of the Problem	139
	-	4.4	Algorithm of Asymptotic Integration	140
	5	ALGO	KITHM FOR SEWING TOGETHER NANT AND NON-RESONANT SOLUTIONS	1/9
		5.1	Essence of the Problem	143
				- + U

viii

Contents	
Contents	

5.

	5.2	Sewing Together of Resonant and Non-Resonant Solutions	144				
	5.3	Example for the Solution 'Sewing':					
	0.0	The 'Stimulated' Duffing Equation	146				
HIERARCHICAL SYSTEMS							
WIT	'H FAS'	T ROTATING PHASES.					
EXA	MPLE	S OF PRACTICAL					
APP	LICAT	IONS	157				
1	GENE	RAL PROPERTIES OF THE MODEL:					
	'A CH	ARGED PARTICLE IN THE FIELD					
	OF A	STANDING ELECTROMAGNETIC					
	WAVE	' AND EXAMPLES					
	OF IT	S PRACTICAL REALIZATION	158				
	1.1	Systems for Transformation of					
		Optical Signals into Microwave Signals					
		as a Convenient Illustrative Examples	158				
	1.2	Formulation of the Problem of Electron Motion					
		in the Field of Two Oppositely Propagating					
		Electromagnetic Waves	164				
ი	MODE	AN FLECTRON IN THE FIELD					
2	OF TI	NO OPPOSITELY DIRECTED					
	ELEC'	TROMAGNETIC WAVES' AS A TWO-LEVEL					
	HIERA	ARCHICAL					
	OSCII	LATATIVE SYSTEM	167				
	21	Reducing Initial Motion Equations to					
	2.1	the Standard Forms with Two Rotation Phases	167				
	0.0	Zanath Hispanchical Loyal	201				
	2.2	Derometrical Resonance	170				
	0.0	D E' at Hisparchical Land	110				
	2.3	Passage to First Hierarchical Level.	171				
	- <i>i</i>	Noninear Pendulum	111				
	2.4	Nonlinear Pendulum.	176				
		The Miller–Gaponov Potential	170				
	2.5	Nonlinear Pendulum. The First Motion Integral	178				
	2.6	Nonlinear Pendulum.					
		Exact Solutions and Analysis	178				
	2.7	Full Solutions of the Initial System	183				
3	MODE	EL 'AN ELECTRON IN THE FIELD					
0	OF TV	WO OPPOSITELY DIRECTED					
	ELEC	TROMAGNETIC WAVES' AS					
	A TH	REE-LEVEL HIERARCHICAL					
	OSCII	LATATIVE SYSTEM	185				
	3.1	Transition to the Second Hierarchical Level	185				

ix

		3.2	Duffing Oscillator	188
	4	MODH THRE	EL 'AN ELECTRON IN THE FIELD OF E ELECTROMAGNETIC	
		WAVE	CS' AS A FOURTH-LEVEL HIERARCHICAL	100
		OSCIL	LATATIVE SYSTEM	192
		4.1	Stimulated Oscillation of a Charged Particle	192
		4.2	Stimulated Oscillations of an Electron Ensemble	196
6.	HIE PAR	RARCI TIAL I	HICAL SYSTEMS WITH DERIVATIVES. METHOD OF D. CHARACTERISTICS	207
		RAGE	D CHARACIERISTICS	207
	1	50ME	Motion Equations	208
		1.1	Field Equations	208
		1.2	Field Equations	210
		1.5	Partial Derivatives	211
	2	METH	IOD OF AVERAGED CHARACTERISTICS	213
		2.1	Concept of the Standard Form	213
		2.2	General Scheme of the Method	214
	3	CHAR THE M	ACTERISTICS AND METHOD OF CHARACTERISTICS	222
		3.1	Method of Characteristics. The Scalar Case	222
		3.2	Method of Characteristics. The Vector Case	227
	4	EXAM THE N FOR A OSCIL	IPLE: APPLICATION OF METHOD OF AVERAGED CHARACTERISTICS A SIMPLEST SYSTEM WITH LLATATIVE RIGHT PARTS	231
		4.1	Initial Equations	231
		4.2	Characteristics	232
		4.3	Passage to the First Hierarchical Level	232
		4.4	Back Transformations	234
	5	HIERA QUAS	ARCHICAL METHOD OF AVERAGED I-HYDRODYNAMIC EQUATION	236
		5.1	Averaged Quasi-Hydrodynamic Equation	237
		5.2	Back Transformations	240
	6	THE N	METHOD OF AVERAGED	0.40
		CURR	ENT-DENSITY EQUATION	240
		0.1	Averaged Current–Density Equation	241
		6.2	Back Transformations	244

Contents

	7	HIERA THE A	ARCHICAL METHOD OF AVERAGED KINETIC EQUATION	244		
		7.1	Averaged Kinetic Equation	244		
7.	EXA THE CHA THE INST	AMPLE E METI ARACT EORY (FABILI	C: APPLICATION OF HOD OF AVERAGED ERISTICS IN NONLINEAR OF THE TWO-STREAM TY	249		
	1	PROB	SLEM OF MOTION			
		OF A	TWO-VELOCITY ELECTRON BEAM			
		IN GI	VEN ELECTROMAGNETIC FIELDS	252		
		1.1	Statement of the Motion Problem	253		
		1.2	Averaged Characteristics for the Motion Problem	254		
		1.3	Back Transformations	260		
		1.4	Integration of the Averaged Quasi-Linear Equation for the Beam Velocity	261		
	2	FIELD) PROBLEM. HIERARCHICAL			
		ASYM	IPTOTIC INTEGRATION OF			
		THE (CONTINUITY EQUATION	262		
		2.1	Continuity Equation of the Two-Velocity Electron Beam	263		
		2.2	Averaged Characteristics and			
			the Averaged Quasi-Linear Equation	264		
		2.3	Back Transformation	268		
		2.4	Characteristics of			
			the Averaged Continuity Equation	270		
	3	FIELD	O PROBLEM. APPLICATION OF			
		THE N	METHOD OF AVERAGED			
		UHAR	CRATION OF			
		THE	MAXWELL'S EQUATIONS	271		
		3.1	Averaged Maxwell's Equations	271		
		3.2	Back Transformations	275		
		3.3	Solving the Averaged Quasilinear			
		0.0	Equation for the Electric Field	276		
		3.4	Truncated Equations for the Harmonic			
			Amplitudes of a Space Charge Wave	277		
		3.5	Some Commentaries for the Obtained Results	279		
8.	HIE	HIERARCHICAL SYSTEMS				
	WITH PARTIAL DERIVATIVES.					
	SOME OTHER ASYMPTOTIC METHODS 28					

xi

1	MAII SLOV	N IDEAS OF THE METHOD OF WLY VARYING AMPLITUDES	284
	1.1	General Calculational Scheme of the Slowly Varying Amplitudes Method	285
	1.2	Simplified Version of the Slowly Varying Amplitude Method. Example: Effect of Parametric Amplification of a Wave	288
2	TRA THE MET	DITIONAL VARIANT OF SLOWLY VARYING AMPLITUDES HOD. RIGOROUS VERSION	293
	2.1	Case of Spatially One-Dimensional Model	294
	2.2	Classification of Transversely Inhomogeneous Models	306
	23	Model with Moderate Inhomogeneity	306
	2.0 2.4	Method of Parabolic Equation	308
0	2.4 MOD	Method of Latabolic Equation	000
3	MOD VAR	VING AMPLITUDE METHOD	309
	3.1	Field Problem	309
	3.2	Current Density Problem	311
	3.3	Current Density Problem in Framework of	
		the Kinetic Approach	313
4	MET TRAI	HOD OF HIERARCHICAL NSFORMATION OF COORDINATES	314
	4.1	Main Idea of the Hierarchical Transformations	314
	4.2	Hierarchical Equations	317
	4.3	Averaged Operator $\overline{\vec{\nabla}}$	320
5	MITH	ROPOL'SKII METHOD	322
	5.1	Reduction of a Partial Differential Equation to the Standard Form with	
		Fast Rotating Phases	322
	5.2	Basic Solutions	323
	5.3	Truncated Equations	324
6	EXAL THE THE THE AMP	MPLES OF REDUCING OF MAXWELL EQUATIONS TO STANDARD FORM FOR METHOD OF SLOWLY VARYING LITUDES	326
	6.1	Kinetic Version	326
	6.2	Quasi-Hydrodynamic Case	328

Contents

7	EXA INST ELEC AVEI	MPLE: THE TWO-STREAM ABILITY IN A TWO-VELOCITY CTRON BEAM. THE METHODS OF RAGED QUASI-HYDRODYNAMIC		
	EQU.	ATION AND SLOWLY VARYING AMPLITUDES	329	
	7.1	Statement of the Problem	329	
	7.2	Motion Problem. The Averaged Quasi-hydrodynamic Equation	330	
	7.3	Motion Problem. The Back Transformations	340	
	7.4	Field Problem. The Method of Slowly Varying Amplitudes	341	
Append	lices		349	
Resi	Results of calculations in the second approximation			
Inde	ex		351	

xii

1