Table of Contents

1

PREFACE x							
BIOGRAPHY OF PROF. A.O. BARUT xv							
AS MA	PECT ATTEF	S OF LOCAL-FIELD ELECTRODYNAMICS IN CONDENSE R	D 1				
O. Keller							
1	Introd	luction	1				
2	Condu	activity response formalism in the time-space domain	3				
	2.1	The microscopic Maxwell-Lorentz equations	3				
	2.2	External sources	4				
	2.3	Free-space electromagnetic propagator – an heuristic approach	5				
	2.4	The selfconsistent conductivity response	9				
	2.5	The external conductivity response	11				
	2.6	The relation between the selfconsistent and external conductivity					
		response functions	12				
	2.7	Dielectric-permittivity and magnetic-permeability functions	13				
	2.8	Electrodynamic response theory with the choice	16				
	2.9	Electromagnetic response formalism based on the choice	17				
3	Integral relation between the local field and induced current density		21				
	3.1	Transverse and longitudinal electrodynamics	21				
	3.2	Prescribed current sources located inside the medium	23				
4	Many-body constitutive relation and loop equation		24				
	4.1	Response to the transverse local field plus the longitudinal external					
		field	24				
	4.2	Loop equation for the transverse part of the local field	26				
	4.3	Relations between the many-body and impirical conductivity response					
		functions	27				
5	Coupled-antenna theory		28				
	5.1	Many-body space conductivity and its tensor-product structure	28				
	5.2	On the solution of the loop equation for the transverse local field	31				
6	Three	examples from the physics of mesoscopic systems	32				
	6.1	Linear electrodynamics of quantum wells	32				
	6.2	Quantum dots of light	35				
	6.3	Photon drag in mesoscopic rings	39				

2	PERSISTENT CURRENT AND PERSISTENT CHARGE IN				
		lib			
	1 In	troduction	45		
	2 Pe	ersistent current	46		
	3 Pe	arsistent charge	49		
		esistance oscillation	50		
	5 01	uantum interference in high frequency field	51		
	6 Ot	ther Abaronov-Bohm effects	55		
	0 00				
3	QUAN	TUM OPTICS AND SOLID STATE SPECTROSCOPY	57		
	A.S. Sh	umovsky			
	1 In	troduction	57 E0		
	2 Sq	lueezed States	58 64		
	3 Qu	uantum Spectroscopy of Solids	04 67		
	4 Su	immary	07		
4	LASE	LASER-EXPERIMENTS WITH SINGLE ATOMS IN CAVITIES AND			
	TRAP	S	69		
	H. Walt	her			
	1 In	troduction	69		
	2 Re	eview of the One-Atom Maser	69		
	3 Tł	heory of the One-Atom Maser	72		
	4 Tł	he Photon Statistics of the One-Atom Maser	76		
	5 Q1	uantum Jumps of the Micromaser Field	77		
	6 At	tomic Interferometry in the Micromaser	79		
	7 Li	newidth and Phase Diffusion of the One-Atom Maser	84		
	8 A	New Probe of Complementarity in Quantum Mechanics- The One-Atom			
	M	aser and Atomic Interferometry	85		
	9 Ex	speriments with Trapped Ions-The Paul-Trap	87		
	10 Pł	nase Transitions of Trapped Ions	88		
	11 Tł	he Ion Storage Ring	89		
	12 Or	rdered Structures in the Storage Ring	92		
	13 Ex	xperiments with Single In ⁺ Ions	93		
5	DRES	SSED STATES IN ATOMS AND IN EXCITONS	99		
	G. Com	apagno, R. Passante and F. Persico			
	1 In	troduction	100		
	2 El	lementary Excitations	100		
		xciton versus Atoms	101		
	4 D	ressed Atoms and Dressed Excitons	102		
	5 M	leasurement of Bare Population	104		
	6 M	leasurement on Dressed Atoms or Dressed Excitons	105		
	7 P:	artially Dressed Atoms and Excitons	107		
	8 M	leasurements on Partially Dressed States	109		
	9 C	onclusions	110		
	0				

6	ELECTRON COHERENCE IN QUANTUM WELL INTERSUBBAND						
	TR.	ANSIT	IONS	111			
	A. In	namoğlu	I, H. Schmidt, R.J. Ram, K. Campman and A. Gossard				
	1	Introdu	uction and Background	111			
	2	Semico	onductor Lasers without Inversion	113			
	3	Nonlin	ear Infrared Devices	117			
	4	Quantu	um Well Experiments	118			
	5	Conclu	sion	119			
7	INTERACTION OF TWO-LEVEL ATOMIC SYSTEM WITH A SINGLE-						
	MO	DE RA	ADIATION FIELD	121			
	T. H	lakioğlu					
	1	Introd	uction	121			
	2	The D	icke Model	122			
		2.1	General Solution	124			
	3	Physic	al limitations in the large n limit \ldots \ldots \ldots \ldots	131			
8	QU	ANTU	M ESTIMATION THEORY AND OPTICAL DETECTION	ON 139			
	G.M	l. D'Aria	no				
	1	Introd	uction	139			
	2	Probal	bility operator measures (POM)	142			
		2.1	Orthogonal POM's	142			
		2.2	Commuting POM's	143			
		2.3	Noncommuting POM's	144			
		2.4	Naimark's theorem	146			
	3	POM's	s in quantum optics	148			
		3.1	Direct detection	148			
		3.2	Balanced homodyne detection	150			
		3.3	Heterodyne detector	152			
	4	Joint n	neasurements	155			
		4.1	Marginal joint measurements	156			
	5	Quanti	um estimation theory	158			
		5.1	Canonical measurement of the phase	160			
	6	Beyond	d the POM: state reduction and "instrument"	164			
		6.1	Indirect measurements	165			
		6.2	Realizable instruments	168			
9	ME	ASUR	ING QUANTUM STATES	175			
	G.M	. D'Aria	no				
	1	Introd	uction	175			
	2	Premis	se on the central limit theorem	177			
	3	What	is a tomography? \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	179			
	4	Why q	uantum homodyne tomography?	181			
	5	On the	e impossibility of measuring the Wigner function	182			
	6	Exact	method for measuring the density matrix	182			
	7	Measu	rable representations and bounds for quantum efficiency	183			
		7.1	Quadrature representation	184			
		7.2	Coherent-state representation	184			

	7.3 Number-state representation	. 185
	7.4 Squeezed-state representation	. 185
	7.5 Absolute bound for quantum efficiency	. 185
8	Statistical errors	. 185
9	Reconstruction of the Wigner function at finite resolution	. 189
10	On the impossibility of measuring the density matrix of a single system	. 190
11	Quantum and classical Radon transform	. 194
12	Concluding remarks on experimental applications	. 195
13	Appendices	. 197
	13.1 Proof of the central limit theorem	. 197
	13.2 Derivation of the inverse Radon transform formula	. 198
	13.3 Factorization formula for the integral kernel	. 199
10 OF	PTICAL TOMOGRAPHY AND MACROSCOPIC COHERENCE	203
P.	Tombesi	
1	Wigner Function and Marginal Probabilities	. 203
2	Quadrature Phase Measurements	. 204
$\overline{3}$	Wigner Function from Repeated Measurements	. 206
4	Marginal Distribution for Shifted and Squeezed Quadratures	. 208
5	The Harmonic Oscillator Ground State	. 209
6	Vogel and Risken Result	. 210
7	Direct Reconstruction of Density Matrix Elements	. 211
8	The Effect of Detector's Quantum Efficiency	. 214
9	Macroscopic Quantum Coherence	. 217
10	The Detection Model	. 218
11	Detection of Optical Schrödinger Cats	. 220
12	Interference Fringes	. 221
11 TT A	DMONIC OSCILLATOR STATES IN FINITE DIMENSIONAL	
	DEDT SDACE	225
	JDERI SFACE Minamouries T. Onstronú and I. Bajer	220
A. 1	Introduction	225
2	Finite Dimensional Hilbert Space	. 220
2	Discrete Number Phase Wigner Function	· 220 997
J 4	Special States of Finite Dimensional Hilbert Space	221
4	4.1 Cohorent States	220
	4.1 Concreted Cohoront States	· 220
	4.2 Displaced Number States	220
	4.5 Displaced Number States	. 200
	4.4 If uncalled Number States	. 201
	4.5 Even and Odd Coherent States	. 202
E	4.0 If uncated even and Odd Conferent States	. 200
0	Concluding Remarks	. 204
12 OI	PTICAL SPECTROSCOPY OF MICROCAVITIES	237
<i>A</i> .	Serpengüzel, S. Arnold, G. Griffel and J.A. Lock	a c =
1	Introduction	. 237
2	Experiments	. 242
3	Theory of off-axis Gaussian beam excitation	. 244
4	Conclusion	. 247