Contents

1	Func	lamentals	1
	1.1	Classical Mechanics	1
	1.2	Quantum Mechanics	11
	1.3	Dirac's Bra-Ket Formalism	17
	1.4	Observables	26
	1.5	Quantum Mechanics of General Lagrangian Systems	30
	1.6	Particle on the Surface of a Sphere	37
	1.7	Spinning Top	40
	1.8	Time Evolution Operator	47
	1.9	Properties of the Time Evolution Operator	51
	1.10	Heisenberg Picture of Quantum Mechanics	55
	1.11	Classical and Quantum Statistics	58
	Appe	ndix 1A The Asymmetric Top	63
		s and References	65
2	Path	Integrals - Elementary Properties and Simple Solutions	67
	2.1	Path Integral Representation of Time Evolution Amplitudes	
		ath integral representation of Time Evolution Amplitudes	67
	2.2	Exact Solution for a Free Particle	67 77
	2.2	Exact Solution for a Free Particle	77 88
	2.2 2.3	Exact Solution for a Free ParticleFinite- ϵ Properties of the Free-Particle Amplitude	77 88 88
	2.2 2.3 2.4	Exact Solution for a Free ParticleFinite- ϵ Properties of the Free-Particle AmplitudeExact Solution for the Harmonic Oscillator	77 88 88 93
	$2.2 \\ 2.3 \\ 2.4 \\ 2.5$	Exact Solution for a Free ParticleFinite- ϵ Properties of the Free-Particle AmplitudeExact Solution for the Harmonic OscillatorUseful Fluctuation Formulas	77 88 88 93 95
	2.2 2.3 2.4 2.5 2.6	Exact Solution for a Free ParticleFinite- ϵ Properties of the Free-Particle AmplitudeExact Solution for the Harmonic OscillatorUseful Fluctuation FormulasOscillator Amplitude on a Finite Lattice	77 88 88 93 95 97
	2.2 2.3 2.4 2.5 2.6 2.7	Exact Solution for a Free ParticleFinite- ϵ Properties of the Free-Particle AmplitudeExact Solution for the Harmonic OscillatorUseful Fluctuation FormulasOscillator Amplitude on a Finite LatticeGelfand-Yaglom Formula	77 88 93 93 95 97 102
	2.2 2.3 2.4 2.5 2.6 2.7 2.8	Exact Solution for a Free ParticleFinite- ϵ Properties of the Free-Particle AmplitudeExact Solution for the Harmonic OscillatorUseful Fluctuation FormulasOscillator Amplitude on a Finite LatticeGelfand-Yaglom FormulaOscillator Wave Functions	77 88 93 95 97 102
	2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	Exact Solution for a Free ParticleFinite- ϵ Properties of the Free-Particle AmplitudeExact Solution for the Harmonic OscillatorUseful Fluctuation FormulasOscillator Amplitude on a Finite LatticeGelfand-Yaglom FormulaOscillator Wave FunctionsPath Integrals and Quantum Statistics	77 88 93 95 97 102 103
	2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	Exact Solution for a Free ParticleFinite- ϵ Properties of the Free-Particle AmplitudeExact Solution for the Harmonic OscillatorUseful Fluctuation FormulasOscillator Amplitude on a Finite LatticeGelfand-Yaglom FormulaOscillator Wave FunctionsPath Integrals and Quantum StatisticsDensity Matrix	77 88 93 95 97 102 103 106 111
	2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11	Exact Solution for a Free ParticleFinite- ϵ Properties of the Free-Particle AmplitudeExact Solution for the Harmonic OscillatorUseful Fluctuation FormulasOscillator Amplitude on a Finite LatticeGelfand-Yaglom FormulaOscillator Wave FunctionsPath Integrals and Quantum StatisticsDensity MatrixQuantum Statistics of Harmonic Oscillator	77 88 93 95 95 97 102 103 106 111 117
	2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12	Exact Solution for a Free ParticleFinite- ϵ Properties of the Free-Particle AmplitudeExact Solution for the Harmonic OscillatorUseful Fluctuation FormulasOscillator Amplitude on a Finite LatticeGelfand-Yaglom FormulaOscillator Wave FunctionsPath Integrals and Quantum StatisticsDensity MatrixQuantum Statistics of Harmonic OscillatorTime-Dependent Harmonic Potential	77 88 93 95 97 102 103 106 111 117 121
	2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13	Exact Solution for a Free ParticleFinite- ϵ Properties of the Free-Particle AmplitudeExact Solution for the Harmonic OscillatorUseful Fluctuation FormulasOscillator Amplitude on a Finite LatticeGelfand-Yaglom FormulaOscillator Wave FunctionsPath Integrals and Quantum StatisticsQuantum Statistics of Harmonic OscillatorTime-Dependent Harmonic PotentialFunctional Measure in Fourier Space	77 88 93 95 97 102 103 106 111 117 121

	2.16	Finite-N Behavior of Thermodynamic Quantities 129
	$2.17 \\ 2.18$	Charged Particle in Magnetic Field
		tion
	Appe	endix 2A Derivation of the Baker-Campbell-Hausdorff Formula 139
	Appe	ndix 2B Direct Calculation of the Oscillator Amplitude 141
	Notes	s and References
3	Exte	rnal Sources, Correlations, and Perturbation Theory 147
	3.1	External Sources
	3.2	Green Function of the Harmonic Oscillator
		3.2.1 Wronski Construction
		3.2.2 Spectral Representation
	3.3	Periodic and Antiperiodic Oscillator Green Functions 153
	3.4	Summing the Spectral Representation of the Green Function 160
	3.5	Time Evolution Amplitude in the Presence of a Source Term 162
	3.6	External Source in Quantum-Statistical Path Integral 166
		3.6.1 Continuation of the Real-Time Result 166
		3.6.2 Calculation at Imaginary Time
	3.7	Green Functions on a Lattice
	3.8	A Particle in a Bath of Oscillators
	3.9	Correlation Functions, Generating Functional, and Wick
		Expansion
	3.10	Perturbation Expansion of Anharmonic Systems 177
	3.11	Calculation of Perturbation Series via Feynman Diagrams 179
	3.12	Rayleigh-Schrödinger expansion
		ndix 3A Feynman Integrals for $T \neq 0$
		ndix 3B Energy Shifts for $gx^4/4$ -Interaction
		ndix 3C Recursion Relations for Perturbation Coefficients $.194$
	Notes	s and References
4	Semi	iclassical Time Evolution Amplitude 199
	4.1	The Wentzel-Kramers-Brillouin (WKB) Approximation 199
	4.2	Saddle Point Approximation
		4.2.1 Ordinary Integrals
		4.2.2 Path Integrals
	4.3	The Van Vleck-Pauli-Morette Determinant
	4.4	Semiclassical Fixed-Energy Amplitude
	4.5	Semiclassical Quantum-Mechanical Partition Function 218
	4.6	Multi-Dimensional Systems
	Notes	s and References

5	Varia	ational Perturbation Theory	229
	5.1	Effective Classical Partition Function	229
	5.2	Feynman-Kleinert Trial Partition Function	232
	5.3	Optimal Upper Bound	238
	5.4	Accuracy of the Approximation	239
	5.5	Possible Direct Generalizations	241
	5.6	External Sources and Correlations	243
	5.7	Effective Classical Potential for the Anharmonic Oscillator	
		and the Double-Well Potential	
	5.8	Particle Densities	
	5.9	Extension to D Dimensions	
	5.10	Application to Coulomb and Yukawa Potentials	
	5.11	Effective Potential and Magnetization Curves	
	5.12	Variational Approach to Excitation Energies	262
	5.13	Systematic Improvement of the Feynman-Kleinert	
		Approximation. Variational Perturbation Expansion	
	5.14	Applications of Variational Perturbation Expansion	
		5.14.1 Anharmonic Oscillator at $T = 0$	
		5.14.2 Anharmonic Oscillator at $T > 0$	
	5.15	Convergence of the Variational Perturbation Expansion	
	5.16	Systematic Improvement of Excited Energies	
	5.17	Application to the Double-Well Potential	
		endix 5A Proof of Scaling Relation for Extrema of W_N	
	Notes	s and References	293
6	Path	Integrals with Topological Constraints	297
	6.1	Point Particle on a Circle	297
	6.2	Infinite Wall	302
	6.3	Point Particle in a Box	307
	Notes	s and References	310
7	Man	y Particle Orbits — Statistics and Second Quantization	311
	7.1	Ensembles of Bose and Fermi Orbits	
	7.2	Fractional Statistics	
	7.3	Second-Quantized Bose Fields	
	7.4	Fluctuating Bose Fields	
	7.5	Second-Quantized Fermi Fields	
	7.6	Fluctuating Fermi Fields	
	7.7	External Sources in a^* , a -Path Integral	
	7.8	Generalization to Pair Terms	
	7.9	Spatial Degrees of Freedom	
	Notes	s and References	

th Integrals in Spherical Coordinates 343
Angular Decomposition in Two Dimensions
Trouble with Feynman's Path Integral Formula in Radial Co-
ordinates
Cautionary Remarks
Time Slicing Corrections
Angular Decomposition in Three and More Dimensions 359
8.5.1 Three Dimensions
8.5.2 <i>D</i> Dimensions
Radial Path Integral for Harmonic Oscillator and Free
Particle in D Dimensions
Particle near the Surface of a Sphere in D Dimensions 370
Angular Barriers near the Surface of a Sphere
8.8.1 Angular Barriers in Three Dimensions
8.8.2 Angular Barriers in Four Dimensions
Motion on a Sphere in D Dimensions $\ldots \ldots \ldots \ldots 385$
) Path Integrals on Group Spaces
Path Integral of a Spinning Top
es and References
ed-Energy Amplitude and Wave Functions 395
General Relations
Free Particle
Harmonic Oscillator in D Dimensions
Free Particle from $\omega \rightarrow 0$ -Oscillator
Charged Particle in a Uniform Magnetic Field 411
es and References
ort-Time Amplitude in Spaces with Curvature and
rsion 419
Einstein's Equivalence Principle
2 Classical Motion of a Mass Point in General Metric-Affine
Space
10.2.1 Equations of Motion
10.2.2 Nonholonomic Mapping to Spaces with Torsion 424
10.2.3 Classical Action Principle for Spaces with Curvature
and Torsion
Path Integral in Spaces with Curvature and Torsion 434
10.3.1 Nonholonomic Transformation of the Action 434
10.3.2 The Measure of Path Integration
Completing the Solution of the Path Integral on the Surface
of a Sphere

	10.5 Notos	External Potentials and Vector Potentials	
11		ödinger Equation in General Metric-Affine Spaces	
	11.1	Integral Equation for Time Evolution Amplitude	
	11.2	11.1.2 Alternative Evaluation	
	$\frac{11.2}{11.3}$	Potentials and Vector Potentials	
	11.5	Unitarity Questions	
	11.4 11.5	Alternative Attempts	
		ndix 11A Cancellations in Effective Potential	
		ndix 11B DeWitt's Amplitude	
		and References	
12	New	Path Integral Formula for Singular Potentials	471
	12.1	Path Collapse in Feynman's formula for the Coulomb System	471
	12.2	Stable Path Integral with Singular Potentials	474
	12.3	Time-Dependent Regularization	
	12.4	Relation with Schrödinger Theory. Wave Functions	
	Notes	and References	484
13	Path	Integral of the Coulomb System	485
13	13.1	Pseudotime Evolution Amplitude	485
13	$\begin{array}{c} 13.1\\ 13.2 \end{array}$	Pseudotime Evolution Amplitude	485 487
13	$13.1 \\ 13.2 \\ 13.3$	Pseudotime Evolution Amplitude	485 487 493
13	13.1 13.2 13.3 13.4	Pseudotime Evolution Amplitude	485 487 493 499
13	13.1 13.2 13.3 13.4 13.5	Pseudotime Evolution Amplitude	485 487 493 499 506
13	13.1 13.2 13.3 13.4 13.5 13.6	Pseudotime Evolution Amplitude	485 487 493 499 506 510
13	$13.1 \\ 13.2 \\ 13.3 \\ 13.4 \\ 13.5 \\ 13.6 \\ 13.7 \\$	Pseudotime Evolution Amplitude	485 487 493 499 506 510
13	13.1 13.2 13.3 13.4 13.5 13.6	Pseudotime Evolution Amplitude	485 487 493 499 506 510 511
13	13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8	Pseudotime Evolution Amplitude	485 487 493 499 506 510 511 516
13	13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9	Pseudotime Evolution Amplitude	485 487 493 506 510 511 516 521
13	13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 Appen	Pseudotime Evolution Amplitude	485 487 493 506 510 511 516 521 523
	13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 Appen Notes	Pseudotime Evolution Amplitude	485 487 493 506 510 511 516 521 523 528
	13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 Appen Notes Solut	Pseudotime Evolution Amplitude	485 487 493 506 510 511 516 521 523 528 t
	13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 Appen Notes Solut Meth	Pseudotime Evolution Amplitude	485 487 493 506 510 511 516 521 523 528 t 529
	13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 Appen Notes Solut Meth 14.1	Pseudotime Evolution Amplitude	485 487 499 506 510 511 516 521 528 528 529 529
	13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 Appen Notes Solut Meth 14.1 14.2	Pseudotime Evolution Amplitude	485 487 493 506 510 511 516 521 523 528 529 529 529 533
	13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 Appen Notes Solut Meth 14.1	Pseudotime Evolution Amplitude	485 487 493 506 510 511 516 521 523 528 529 529 529 533 537

		14.4.1 Radial Harmonic Oscillator and Morse System 539	
		14.4.2 Radial Coulomb System and Morse System 541	
		14.4.3 Equivalence of Radial Coulomb System and Radial	
		Oscillator	
		14.4.4 Angular Barrier near a Sphere, and Rosen-Morse	
		Potential	
		14.4.5 Angular Barrier near a Four-Dimensional Sphere,	
		and General Rosen-Morse Potential	
		14.4.6 Hulthén Potential and General Rosen-Morse	
		Potential	
		14.4.7 Extended Hulthén Potential and General Rosen-	
		Morse Potential	
	14.5	D-Dimensional Systems	
	14.6	Path Integral of the Dionium Atom	
		14.6.1 Formal Solution	
		14.6.2 Absence of Time Slicing Corrections	
	14.7	Time-Dependent Duru-Kleinert Transformation	
		ndix 14A Affine Connection of Dionium System	
		ndix 14B Algebraic Aspects of Dionium States	
		and References	
	110000		
15	Path	Integrals in Polymer Physics 578	
	15.1	Polymers and Ideal Random Chains	
	15.2	Moments of	
		End-to-End Distribution	
	15.3	Exact End-to-End Distribution in Three Dimensions 583	
	15.4	Short-Distance Expansion for a Long Polymer	
	15.5	Saddle Point Approximation to Three-Dimensional End-to-	
		End Distribution	
	15.6	Path Integral for the Limiting Distribution	
	15.7	Stiff Polymers	
	15.8	Excluded-Volume Effects	
	15.9	Flory's Argument	
	15.10	Polymer Field Theory	
		and References	
16	Polyı	ners and Particle Orbits in Multiply Connected Spaces 615	
	16.1	Entangled Polymers	
	16.2	Entangled Fluctuating Particle Orbit: The Aharonov-Bohm	
		Effect	
	16.3	Aharonov-Bohm Effect and Fractional Statistics	
	16.4	Self-Entanglement of a Polymer	

	16.5	The Gauss Invariant of Two Curves
	16.6	Bound States of Polymers — Ribbons
	16.7	The Chern-Simons Theory of Entanglements
	16.8	Non-Abelian Chern-Simons Theory
	16.9	Second-Quantized Anyon Fields
	16.10	Anyonic Superconductivity
	16.11	Fractional Quantum Hall Effect
	Appe	ndix 16A Kauffman and BLM/Ho polynomials
		ndix 16B Skein Relation between Wilson Loop Integrals \ldots 681
	Appe	ndix 16C London Equations
	Appe	ndix 16D Hall Effect in Electron Gas
	Notes	and References
17	Path	Integrals and Tunneling 692
	17.1	Double-Well Potential
	17.2	Classical Solutions — Kinks and Antikinks \hdots 695
	17.3	Quadratic Fluctuations
		17.3.1 Zero-Eigenvalue Mode
		17.3.2 Continuum Part of Fluctuation Factor
	17.4	General Formula for Eigenvalue Ratios $\ldots \ldots \ldots \ldots$ 712
	17.5	Fluctuation Determinant from Classical Solution $\ .$
	17.6	Wave Functions of Double-Well
	17.7	Gas of Kinks and Antikinks, and Level Splitting Formula $~$ 720 $$
	17.8	Fluctuation Correction to Level Splitting
	17.9	Tunneling and Decay
	17.10	Large-Order Behavior of Perturbation Expansions
		17.10.1 Growth Properties of Expansion Coefficients 741
		17.10.2 Semiclassical Large-Order Behavior
		17.10.3 Fluctuation Correction to the Imaginary Part and
		Large-Order Behavior
		17.10.4 Variational Approach to Tunneling. Perturbation
		Coefficients to All Orders
		17.10.5 Large-Order Behavior and Convergence of Varia-
		tional Perturbation Expansion
		Decay of Supercurrent in a Thin Closed Wire
		Decay of Metastable Thermodynamic Phases
		Decay of Metastable Vacuum State in Quantum Field Theory 787
		Crossover from Quantum Tunneling to Thermally Driven Decay789
	Apper	ndix 17A Feynman Integrals of Fluctuation Correction 791

18 Path Integrals and Nonequilibrium Quantum Statistics 797
18.1 Linear Response and Time-Dependent Green Functions for
$T \neq 0$
18.2 Spectral Representations of $T \neq 0$ Green Functions 801
18.3 Nonequilibrium Green Functions
18.4 Perturbation Theory for Nonequilibrium Green Functions 818
18.5 Path Integral Coupled to a Thermal Reservoir. Langevin
Equation $\overline{}$ $\phantom{a$
18.6 Fokker-Planck Equation
18.7 Stochastic Interpretation of Quantum-Mechanical Amplitudes 834
18.8 Heisenberg Picture for Probability Evolution
Appendix 18A Inequalities for Diagonal Green Functions
Appendix 18B Decomposition of Operator Products
Notes and References
19 Path Integrals for Relativistic Particle Orbits 848
19.1 Particular Features of Relativistic Path Integrals 849
19.2 Improved Action for Fluctuating Relativistic Particle Orbit . 852
19.3 Relativistic Coulomb System
Notes and References
Index 861