Contents

PREFACE	v	ii							
CHAPTER	1 INTRODUCTION AND SUMMARY								
1.1 Th	ree important practical problems	1							
1.1.1		1							
1.1.2	Estimation of transfer functions	24							
1.1.3									
1.2 Sto	chastic and deterministic dynamic mathematical models .	7							
1.2.1 Stationary and nonstationary stochastic models for fore-									
		7							
1.2.2		3							
1.2.3		6							
1.3 Bas	ic ideas in model building	7							
1.3.1		7							
1.3.2	Iterative stages in the selection of a model	8							
Part I	STOCHASTIC MODELS AND THEIR FORECASTING								
Chapter	2 THE AUTOCORRELATION FUNCTION AND SPECTRUM								
2.1 Aut	accorrelation properties of stationary models	23							
2.1.1		3							
2.1.2		26							
2.1.3		8							
2.1.4		30							
2.1.5	Estimation of autocovariance and autocorrelation functions 3	32							
2.1.6		34							

2.2 Sp 2.2.1		36 36	A3.2 A recursive method for calculating autoregressive parameters	82
2.2.2	Analysis of variance	37	meters . ,	02
2.2.3	The spectrum and spectral density function	39	CHAPTER 4 LINEAR NONSTATIONARY MODELS	
2.2.4	Simple examples of autocorrelation and spectral density	42	4.1 Autoregressive integrated moving average processes	85
2.2.5	functions	42	4.1.1 The nonstationary first order autoregressive process	85
2.2.5	Advantages and disadvantages of the autocorrelation and	4.4	4.1.2 A general model for a nonstationary process exhibiting	
	spectral density functions	44	homogeneity	87
A2.1	Link between the sample spectrum and autocovariance	4.4	4.1.3 The general form of the autoregressive integrated moving	
	function estimate	44	average process	91
			4.2 Three explicit forms for the autoregressive integrated moving	
⊂н∡рт	ER 3 LINEAR STATIONARY MODELS		average model	94
		4.6	4.2.1 Difference equation form of the model	94
	e general linear process	46	4.2.2 Random shock form of the model	95
	Two equivalent forms for the linear process	46	4.2.3 Inverted form of the model	101
	Autocovariance generating function of a linear process	48	4.3 Integrated moving average processes	103
3.1.3		49	4.3.1 The integrated moving average process of order (0, 1, 1)	105
	Autoregressive and moving average processes	51	4.3.2 The integrated moving average process of order $(0, 2, 2)$.	108
	toregressive processes	53	4.3.3 The general integrated moving average process of order	
	Stationarity conditions for autoregressive processes	53	(0, d, q)	112
3.2.2	Autocorrelation function and spectrum of autoregressive	5.4	A4.1 Linear difference equations	114
2 2 2	processes	54	A4.2 The IMA (0, 1, 1) process with deterministic drift.	119
	The first order autoregressive (Markov) process	56	A4.3 Properties of the finite summation operator	120
3.2.4	The second order autoregressive process	58	A4.4 ARIMA processes with added noise	121
3.2.5	The partial autocorrelation function	64	A4.4.1 The sum of two independent moving average processes.	121
3.2.6	Estimation of the partial autocorrelation function	65	A4.4.2 Effect of added noise on the general model	121
3.2.7	Standard errors of partial autocorrelation estimates	65	A4.4.3 Example for an IMA (0, 1, 1) process with added white	
	oving average processes	67	noise	122
	Invertibility conditions for moving average processes	67	A4.4.4 Relation between the IMA (0, 1, 1) process and a random	
3.3.2			walk	123
2 2 2	processes	68	A4.4.5 Autocovariance function of the general model with added	
	The first-order moving average process	69	correlated noise	124
3.3.4	The second-order moving average process			
3.3.5	Duality between autoregressive and moving average pro-	70	CHAPTER 5 FORECASTING	
	cesses	72	5.1 Minimum mean square error forecasts and their properties .	126
	xed autoregressive—moving average processes	73	5.1.1 Derivation of the minimum mean square error forecasts .	127
3.4.1	Stationarity and invertibility properties	73	5.1.2 Three basic forms for the forecast	129
	Autocorrelation function and spectrum of mixed processes	74	5.2 Calculating and updating forecasts	132
3.4.3	The first-order autoregressive—first order moving average	7.	5.2.1 A convenient format for the forecasts	132
2 4 4	process	76	5.2.2 Calculation of the ψ weights	132
3.4.4	Summary	80	5.2.3 Use of the ψ weights in updating the forecasts	134
A3,1	Autocovariances, autocovariance generating functions and	00	5.2.4 Calculation of the probability limits of the forecasts at any	
	stationarity conditions for a general linear process	80	load time	135

Contents

χv

6.3.3 Initial estimates for autoregressive processes . . .

189

Contents

xvii

246

xviii Contents

7.2.5 P		9.3.2 Identification	324
7.3.5 Parameter redundancy	248	9.3.3 Estimation	325
7.4 Estimation using Bayes' theorem	250	9.3.4 Eventual forecast functions for various seasonal models .	325
7.4.1 Bayes' theorem	250	9.3.5 Choice of transformation	
7.4.2 Bayesian estimation of parameters	252	A9.1 Autocovariances for some seasonal models	329
7.4.3 Autoregressive processes	253		
7.4.4 Moving average processes	255	PART III TRANSFER FUNCTION MODEL BUILDING	
7.4.5 Mixed processes	257		
A7.1 Review of normal distribution theory	258	CHAPTER 10 TRANSFER FUNCTION MODELS	
A7.2 A review of linear least squares theory	265	10.1 Linear transfer function models	337
A7.3 Examples of the effect of parameter estimation errors on		10.1.1 The discrete transfer function	338
probability limits for forecasts	267	10.1.2 Continuous dynamic models represented by differential	
A7.4 The exact likelihood function for a moving average process.	269	equations	340
A7.5 The exact likelihood function for an autoregressive process	274	10.2 Discrete dynamic models represented by difference equations	345
A7.6 Special note on estimation of moving average parameters .	284	10.2.1 The general form of the difference equation	345
,		10.2.2 Nature of the transfer function	346
CHAPTER 8 MODEL DIAGNOSTIC CHECKING		10.2.3 First and second order discrete transfer function models.	348
	285	10.2.4 Recursive computation of output for any input	353
8.1 Checking the stochastic model	285	10.3 Relation between discrete and continuous models	355
8.1.1 General philosophy	286	10.3.1 Response to a pulsed input	356
8.1.2 Overfitting		10.3.2 Relationships for first and second order coincident	330
8.2 Diagnostic checks applied to residuals	287	systems	358
8.2.1 Autocorrelation check	289	10.3.3 Approximating general continuous models by discrete	336
8.2.2 A portmanteau lack of fit test	290	models	361
8.2.3 Model inadequacy arising from changes in parameter values	293	10.3.4 Transfer function models with added noise	
8.2.4 Cumulative periodogram check	294		362
8.3 Use of residuals to modify the model	298	A10.1 Continuous models with pulsed inputs	363
8.3.1 Nature of the correlations in the residuals when an incorrect		A10.2 Nonlinear transfer functions and linearization	367
model is used	298	C IDENTIFICATION FITTING AND CHECKING	
8.3.2 Use of residuals to modify the model	299	CHAPTER 11 IDENTIFICATION, FITTING, AND CHECKING OF TRANSFER FUNCTION MODELS	
CHAPTER 9 SEASONAL MODELS		11.1 The cross correlation function	371
9.1 Parsimonious models for seasonal time series	300	11.1.1 Properties of the cross covariance and cross correlation	
		functions	371
9.1.1 Fitting versus forecasting	301	11.1.2 Estimation of the cross covariance and cross correlation	
9.1.2 Seasonal models involving adaptive sines and cosines .	301	functions	374
9.1.3 The general multiplicative seasonal model	303	11.1.3 Approximate standard errors of cross correlation estimates	376
9.2 Representation of the airline data by a multiplicative $(0, 1, 1) \times$	205	11.2 Identification of transfer function models	377
$(0, 1, 1)_{12}$ seasonal model	305	11.2.1 Identification of transfer function models by prewhitening	
9.2.1 The multiplicative $(0, 1, 1) \times (0, 1, 1)_{12}$ model	305	the input	379
9.2.2 Forecasting	306	11.2.2 An example of the identification of a transfer function	317
9.2.3 Identification	313	model	381
9.2.4 Estimation	315	11.2.3 Identification of the noise model	383
9.2.5 Diagnostic checking	320	11.2.4 Some general considerations in identifying transfer	505
9.3 Some aspects of more general seasonal models	322	function models	386
9.3.1 Multiplicative and nonmultiplicative models	322	runction models ,	300

Contents

xix

12.2.3 Examples of discrete feedback control

ХX

437

446

448

448

449

451

451

451

453

458

460

461

465

469

472

474

483

486

487

488

495

517

524 538

543

559

Contents