Contents

 Preface Acknowledgments Glossary of Symbols 1 Introduction 1.1 Parallel Computers 1.1.1 Taxonomy of parallel architectures 1.2 Unifying concepts of parallel computing 1.3 Control and data parallelism 1.2 How Does Parallelism Affect Computing? 1.3 Control and data parallelism 1.2 How Does Parallelism Affect Computing? 1.3 A Classification of Parallel Algorithms 1.3.1 Parallelism due to algorithm structure: Iterative projection algorithms 1.3.2 Parallelism due to problem structure: Model decomposition and interior point algorithms 1.4 Measuring the Performance of Parallel Algorithms 1.5 Notes and References PART I THEORY 2 Generalized Distances and Generalized Projections 2.1 Bregman Functions and Generalized Projections 2.2 Generalized Projections onto Hyperplanes 2.3 Bregman Functions on the Whole Space 2.4 Characterization of Generalized Projections 2.5 Csiszár φ-divergences 2.6 Notes and References 3 Proximal Minimization with <i>D</i>-Functions 3.1 The Proximal Minimization Algorithm 3 Special Cases: Quadratic and Entropic PMD 3 A Nates and Beferences 		Fore	word, by George B. Dantzig	vii
 Acknowledgments Glossary of Symbols 1 Introduction Parallel Computers 1.1 Taxonomy of parallel architectures 1.2 Unifying concepts of parallel computing 1.3 Control and data parallelism How Does Parallelism Affect Computing? A Classification of Parallel Algorithms Parallelism due to algorithm structure: Iterative projection algorithms Parallelism due to problem structure: Model decomposition and interior point algorithms Measuring the Performance of Parallel Algorithms Notes and References PART I THEORY 2 Generalized Distances and Generalized Projections Bregman Functions on the Whole Space Characterization of Generalized Projections Sciszár φ-divergences Notes and References 3 Proximal Minimization with D-Functions The Proximal Minimization Algorithm Convergence Analysis of the PMD Algorithm Special Cases: Quadratic and Entropic PMD Nates and Baferences 		Pref	ace	1X
 Glossary of Symbols 1 Introduction Parallel Computers Taxonomy of parallel architectures Taxonomy of parallel architectures Unifying concepts of parallel computing Control and data parallelism How Does Parallelism Affect Computing? Control and data parallelism How Does Parallelism Affect Computing? A Classification of Parallel Algorithms Parallelism due to algorithm structure: Iterative projection algorithms Parallelism due to problem structure: Model decomposition and interior point algorithms Parallelism due to problem structure: Model decomposition and interior point algorithms Measuring the Performance of Parallel Algorithms Notes and References PART I THEORY Ceneralized Distances and Generalized Projections Bregman Functions and Generalized Projections Generalized Projections onto Hyperplanes Bregman Functions on the Whole Space Characterization of Generalized Projections Sciszár φ-divergences Notes and References Proximal Minimization with <i>D</i>-Functions The Proximal Minimization Algorithm Special Cases: Quadratic and Entropic PMD Nates and Beferences 		Ack	nowledgments	xvi
 Introduction Parallel Computers Taxonomy of parallel architectures		Glos	sary of Symbols	xxvi
 1.1 Parallel Computers 1.1 Taxonomy of parallel architectures 1.2 Unifying concepts of parallel computing 1.3 Control and data parallelism 1.2 How Does Parallelism Affect Computing? 1.3 A Classification of Parallel Algorithms 1.3 Parallelism due to algorithm structure: Iterative projection algorithms 1.3.2 Parallelism due to problem structure: Model decomposition and interior point algorithms 1.4 Measuring the Performance of Parallel Algorithms Notes and References PART I THEORY 2 Generalized Distances and Generalized Projections Bregman Functions and Generalized Projections Generalized Projections onto Hyperplanes Bregman Functions on the Whole Space Characterization of Generalized Projections S Csiszár φ-divergences Notes and References 3 Proximal Minimization with <i>D</i>-Functions The Proximal Minimization Algorithm Special Cases: Quadratic and Entropic PMD Notes and References 	1	Introduction		
 1.1.1 Taxonomy of parallel architectures Unifying concepts of parallel computing Control and data parallelism How Does Parallelism Affect Computing? A Classification of Parallel Algorithms Parallelism due to algorithm structure: Iterative projection algorithms Parallelism due to problem structure: Model decomposition and interior point algorithms Measuring the Performance of Parallel Algorithms Notes and References PART I THEORY Generalized Distances and Generalized Projections Bregman Functions and Generalized Projections Generalized Projections onto Hyperplanes Bregman Functions on the Whole Space Characterization of Generalized Projections Csiszár φ-divergences Notes and References Proximal Minimization with D-Functions The Proximal Minimization Algorithm Special Cases: Quadratic and Entropic PMD Notes and References 		1.1	Parallel Computers	5
 1.1.2 Unifying concepts of parallel computing 1.1.3 Control and data parallelism 1.4 How Does Parallelism Affect Computing? 1.3 A Classification of Parallel Algorithms 1.3.1 Parallelism due to algorithms structure: Iterative projection algorithms 1.3.2 Parallelism due to problem structure: Model decomposition and interior point algorithms 1.4 Measuring the Performance of Parallel Algorithms 1.5 Notes and References PART I THEORY 2 Generalized Distances and Generalized Projections 2.1 Bregman Functions and Generalized Projections 2.2 Generalized Projections onto Hyperplanes 2.3 Bregman Functions on the Whole Space 2.4 Characterization of Generalized Projections 2.5 Csiszár φ-divergences 2.6 Notes and References 3 Proximal Minimization with <i>D</i>-Functions 3.1 The Proximal Minimization Algorithm 3.2 Convergence Analysis of the PMD Algorithm 3.3 Special Cases: Quadratic and Entropic PMD 3.4 Nates and References 			1.1.1 Taxonomy of parallel architectures	6
 1.1.3 Control and data parallelism How Does Parallelism Affect Computing? A Classification of Parallel Algorithms 1.3 A Classification of Parallel Algorithms 1.3.1 Parallelism due to algorithm structure: Iterative projection algorithms 1.3.2 Parallelism due to problem structure: Model decomposition and interior point algorithms 1.4 Measuring the Performance of Parallel Algorithms 1.5 Notes and References PART I THEORY 2 Generalized Distances and Generalized Projections 2.1 Bregman Functions and Generalized Projections 2.2 Generalized Projections onto Hyperplanes 2.3 Bregman Functions on the Whole Space 2.4 Characterization of Generalized Projections 2.5 Csiszár φ-divergences 2.6 Notes and References 3 Proximal Minimization with <i>D</i>-Functions 3.1 The Proximal Minimization Algorithm 3.2 Convergence Analysis of the PMD Algorithm 3.3 Special Cases: Quadratic and Entropic PMD 3 4 Nates and References 			1.1.2 Unifying concepts of parallel computing	8
 How Does Parallelism Affect Computing? A Classification of Parallel Algorithms 1.3 A Classification of Parallel Algorithms 1.3.1 Parallelism due to algorithm structure: Iterative projection algorithms 1.3.2 Parallelism due to problem structure: Model decomposition and interior point algorithms 1.4 Measuring the Performance of Parallel Algorithms 1.5 Notes and References PART I THEORY Generalized Distances and Generalized Projections 2.1 Bregman Functions and Generalized Projections 2.2 Generalized Projections onto Hyperplanes 2.3 Bregman Functions on the Whole Space 2.4 Characterization of Generalized Projections 2.5 Csiszár φ-divergences 2.6 Notes and References 3 Proximal Minimization with D-Functions 3.1 The Proximal Minimization Algorithm 3.2 Convergence Analysis of the PMD Algorithm 3.3 Special Cases: Quadratic and Entropic PMD 3.4 Nates and References 			1.1.3 Control and data parallelism	10
 1.3 A Classification of Parallel Algorithms 1.3.1 Parallelism due to algorithm structure: Iterative projection algorithms 1.3.2 Parallelism due to problem structure: Model decomposition and interior point algorithms 1.4 Measuring the Performance of Parallel Algorithms 1.5 Notes and References PART I THEORY 2 Generalized Distances and Generalized Projections Bregman Functions and Generalized Projections Generalized Projections onto Hyperplanes Bregman Functions on the Whole Space Characterization of Generalized Projections Csiszár φ-divergences Notes and References 3 Proximal Minimization with <i>D</i>-Functions The Proximal Minimization Algorithm Convergence Analysis of the PMD Algorithm Special Cases: Quadratic and Entropic PMD 		1.2	How Does Parallelism Affect Computing?	13
 1.3.1 Parallelism due to algorithm structure: Iterative projection algorithms 1.3.2 Parallelism due to problem structure: Model decomposition and interior point algorithms 1.4 Measuring the Performance of Parallel Algorithms 1.5 Notes and References PART I THEORY 2 Generalized Distances and Generalized Projections 2.1 Bregman Functions and Generalized Projections 2.2 Generalized Projections onto Hyperplanes 2.3 Bregman Functions on the Whole Space 2.4 Characterization of Generalized Projections 2.5 Csiszár φ-divergences 2.6 Notes and References 3 Proximal Minimization with D-Functions 3.1 The Proximal Minimization Algorithm 3.2 Convergence Analysis of the PMD Algorithm 3.3 Special Cases: Quadratic and Entropic PMD 3.4 Nature and References 		1.3	A Classification of Parallel Algorithms	15
 Iterative projection algorithms Parallelism due to problem structure: Model decomposition and interior point algorithms Measuring the Performance of Parallel Algorithms Notes and References PART I THEORY Generalized Distances and Generalized Projections Bregman Functions and Generalized Projections Generalized Projections onto Hyperplanes Bregman Functions on the Whole Space Characterization of Generalized Projections Csiszár φ-divergences Notes and References Proximal Minimization with D-Functions The Proximal Minimization Algorithm Convergence Analysis of the PMD Algorithm Special Cases: Quadratic and Entropic PMD 			1.3.1 Parallelism due to algorithm structure:	
 1.3.2 Parallelism due to problem structure: Model decomposition and interior point algorithms 1.4 Measuring the Performance of Parallel Algorithms 1.5 Notes and References PART I THEORY 2 Generalized Distances and Generalized Projections 2.1 Bregman Functions and Generalized Projections 2.2 Generalized Projections onto Hyperplanes 2.3 Bregman Functions on the Whole Space 2.4 Characterization of Generalized Projections 2.5 Csiszár φ-divergences 2.6 Notes and References 3 Proximal Minimization with D-Functions 3.1 The Proximal Minimization Algorithm 3.2 Convergence Analysis of the PMD Algorithm 3.3 Special Cases: Quadratic and Entropic PMD 3.4 Notes and References 			Iterative projection algorithms	15
1.4Measuring the Performance of Parallel Algorithms1.5Notes and ReferencesPART I THEORY2Generalized Distances and Generalized Projections2.1Bregman Functions and Generalized Projections2.2Generalized Projections onto Hyperplanes2.3Bregman Functions on the Whole Space2.4Characterization of Generalized Projections2.5Csiszár φ -divergences2.6Notes and References3Proximal Minimization with D-Functions3.1The Proximal Minimization Algorithm3.2Convergence Analysis of the PMD Algorithm3.3Special Cases: Quadratic and Entropic PMD3.4Nates and References			1.3.2 Parallelism due to problem structure: Model	10
 1.4 Measuring the Performance of Parallel Algorithms 1.5 Notes and References PART I THEORY 2 Generalized Distances and Generalized Projections 2.1 Bregman Functions and Generalized Projections 2.2 Generalized Projections onto Hyperplanes 2.3 Bregman Functions on the Whole Space 2.4 Characterization of Generalized Projections 2.5 Csiszár φ-divergences 2.6 Notes and References 3 Proximal Minimization with D-Functions 3.1 The Proximal Minimization Algorithm 3.2 Convergence Analysis of the PMD Algorithm 3.3 Special Cases: Quadratic and Entropic PMD 3.4 Nates and References 			decomposition and interior point algorithms	19
 Notes and References PART I THEORY Generalized Distances and Generalized Projections Bregman Functions and Generalized Projections Generalized Projections onto Hyperplanes Bregman Functions on the Whole Space Characterization of Generalized Projections Csiszár φ-divergences Notes and References Proximal Minimization with D-Functions The Proximal Minimization Algorithm Convergence Analysis of the PMD Algorithm Special Cases: Quadratic and Entropic PMD Notes and References 		1.4	Measuring the Performance of Parallel Algorithms	22
 PART I THEORY 2 Generalized Distances and Generalized Projections Bregman Functions and Generalized Projections Generalized Projections onto Hyperplanes Bregman Functions on the Whole Space Characterization of Generalized Projections Csiszár φ-divergences Notes and References 3 Proximal Minimization with D-Functions The Proximal Minimization Algorithm Convergence Analysis of the PMD Algorithm Special Cases: Quadratic and Entropic PMD 		1.5	Notes and References	24
 2 Generalized Distances and Generalized Projections 2.1 Bregman Functions and Generalized Projections 2.2 Generalized Projections onto Hyperplanes 2.3 Bregman Functions on the Whole Space 2.4 Characterization of Generalized Projections 2.5 Csiszár φ-divergences 2.6 Notes and References 3 Proximal Minimization with D-Functions 3.1 The Proximal Minimization Algorithm 3.2 Convergence Analysis of the PMD Algorithm 3.3 Special Cases: Quadratic and Entropic PMD 3.4 Nates and References 		PAF	RT I THEORY	
 2.1 Bregman Functions and Generalized Projections 2.2 Generalized Projections onto Hyperplanes 2.3 Bregman Functions on the Whole Space 2.4 Characterization of Generalized Projections 2.5 Csiszár φ-divergences 2.6 Notes and References 3 Proximal Minimization with D-Functions 3.1 The Proximal Minimization Algorithm 3.2 Convergence Analysis of the PMD Algorithm 3.3 Special Cases: Quadratic and Entropic PMD 3.4 Notes and References 	2	Gen	eralized Distances and Generalized Projections	29
 2.2 Generalized Projections onto Hyperplanes 2.3 Bregman Functions on the Whole Space 2.4 Characterization of Generalized Projections 2.5 Csiszár φ-divergences 2.6 Notes and References 3 Proximal Minimization with D-Functions 3.1 The Proximal Minimization Algorithm 3.2 Convergence Analysis of the PMD Algorithm 3.3 Special Cases: Quadratic and Entropic PMD 3.4 Notes and References 		2.1	Bregman Functions and Generalized Projections	30
 2.3 Bregman Functions on the Whole Space 2.4 Characterization of Generalized Projections 2.5 Csiszár φ-divergences 2.6 Notes and References 3 Proximal Minimization with D-Functions 3.1 The Proximal Minimization Algorithm 3.2 Convergence Analysis of the PMD Algorithm 3.3 Special Cases: Quadratic and Entropic PMD 3.4 Notes and Peferences 		2.2	Generalized Projections onto Hyperplanes	35
 2.4 Characterization of Generalized Projections 2.5 Csiszár φ-divergences 2.6 Notes and References 3 Proximal Minimization with D-Functions 3.1 The Proximal Minimization Algorithm 3.2 Convergence Analysis of the PMD Algorithm 3.3 Special Cases: Quadratic and Entropic PMD 3.4 Notes and References 		2.3	Bregman Functions on the Whole Space	38
 2.5 Csiszár φ-divergences 2.6 Notes and References 3 Proximal Minimization with D-Functions 3.1 The Proximal Minimization Algorithm 3.2 Convergence Analysis of the PMD Algorithm 3.3 Special Cases: Quadratic and Entropic PMD 3.4 Notes and References 		2.4	Characterization of Generalized Projections	42
 2.6 Notes and References 3 Proximal Minimization with D-Functions 3.1 The Proximal Minimization Algorithm 3.2 Convergence Analysis of the PMD Algorithm 3.3 Special Cases: Quadratic and Entropic PMD 3.4 Notes and References 		2.5	Csiszár φ -divergences	45
 3 Proximal Minimization with D-Functions 3.1 The Proximal Minimization Algorithm 3.2 Convergence Analysis of the PMD Algorithm 3.3 Special Cases: Quadratic and Entropic PMD 3.4 Notes and Peferoneee 		2.6	Notes and References	47
 3.1 The Proximal Minimization Algorithm 3.2 Convergence Analysis of the PMD Algorithm 3.3 Special Cases: Quadratic and Entropic PMD 3.4 Notes and References 	3	Prox	kimal Minimization with D -Functions	49
 3.2 Convergence Analysis of the PMD Algorithm 3.3 Special Cases: Quadratic and Entropic PMD 3.4 Notes and References 		3.1	The Proximal Minimization Algorithm	50
3.3 Special Cases: Quadratic and Entropic PMD		3.2	Convergence Analysis of the PMD Algorithm	51
3.4 Notes and Paferoness		3.3	Special Cases: Quadratic and Entropic PMD	57
J.4 NOLES AND REFERENCES		3.4	Notes and References	57

4	Penalty Methods, Barrier Methods and Augmented		
	Lagr	Develop Methods	00 60
	4.1	Penalty Methods	00
	4.2	Barrier Methods	63
	4.3	The Primal-Dual Algorithmic Scheme	65
	4.4	Augmented Lagrangian Methods	68
	4.5	Notes and References	74
	PAR	T II ALGORITHMS	
5	Itera	tive Methods for Convex Feasibility Problems	79
	5.1	Preliminaries: Control Sequences and Relaxation	
		Parameters	80
	5.2	The Method of Successive Orthogonal Projections	81
	5.3	The Cyclic Subgradient Projections Method	83
	5.4	The Relationship of CSP to Other Methods	87
		5.4.1 The method of successive orthogonal	
		projections	87
		5.4.2 A remotest set controlled subgradient	
		projections method	88
		5.4.3 The scheme of Oettil	00
		inequalities	89
		5.4.5 Kaczmarz's algorithm for systems of linear	
		equations and its nonlinear extension	90
	5.5	The (δ, η) -Algorithm	92
	5.6	The Block-Iterative Projections Algorithm	100
		5.6.1 Convergence of the BIP algorithm	102
	5.7	The Block-Iterative (δ, η) -Algorithm	106
	5.8	The Method of Successive Generalized Projections	107
	5.9	The Multiprojections Algorithm	110
		5.9.1 The product space setup	110
		5.9.2 Generalized projections in the product space	112
		5.9.3 The simultaneous multiprojections algorithm	
		and the split feasibility problem	113
	5.10	Automatic Relaxation for Linear Interval	
		Feasibility Problems	116
	5.11	Notes and References	122

6	ltera Opt	ative Algorithms for Linearly Constrained imization Problems	127
	6.1	The Problem, Solution Concepts, and the Special	
	0.1	Environment	128
		6.1.1 The problem	128
		6.1.2 Approaches and solution concepts	128
		6.1.3 The special computational environment	131
	6.2	Row-Action Methods	131
	6.3	Bregman's Algorithm for Inequality Constrained	199
		Problems	133
	6.4	Algorithm for Interval-Constrained Problems	142
	6.5	Row-Action Algorithms for Norm Minimization	147
		6.5.1 The algorithm of Kaczmarz	147
		6.5.2 The algorithm of Hildreth	148
		6.5.3 ART4 – An algorithm for norm minimization over linear intervals	150
	66	Row-Action Algorithms for Shannon's Entropy	
	0.0	Optimization	152
	67	Block-Iterative MART Algorithm	154
	6.8	Underrelevation Parameters and Extension of the	101
	0.8	Family of Bregman Functions	160
	6.9	The Hybrid Algorithm: A Computational	
		Simplification	172
		6.9.1 Hybrid algorithms for Shannon's entropy	176
		6.9.2 Algorithms for the Burg entropy function	178
		6.9.3 Rényi's entropy function	184
	6.10	Notes and References	186
7	Мо	del Decomposition Algorithms	190
	7.1	General Framework of Model Decompositions	191
		7.1.1 Problem modifiers	192
		7.1.2 Solution algorithms	195
	7.2	The Linear-Quadratic Penalty (LQP) Algorithm	201
		7.2.1 Analysis of the ϵ -smoothed linear-quadratic	
		penalty function	204
		7.2.2 ϵ -exactness properties of the LQP function	209
	7.3	Notes and References	213
8	Dec	ompositions in Interior Point Algorithms	217
	8.1 The Primal-Dual Path Following Algorithm for		
		Linear Programming	218
		8.1.1 Choosing the step lengths	222

		8.1.2	Choosing the barrier parameter	222
	8.2	The P	rimal-Dual Path Following Algorithm for Quadratic	
		Progra	amming	223
	8.3	Parall	el Matrix Factorization Procedures for the In-	
		terior	Point Algorithm	227
		8.3.1	The matrix factorization procedure for the	
			dual step direction calculation	228
	8.4	Notes	and References	232
	PAR	тш	APPLICATIONS	
9	Mate	rix Esti	imation Problems	237
	9.1	Applie	cations of Matrix Balancing	238
		9.1.1	Economics: social accounting matrices	
			(SAMs)	238
		9.1.2	Transportation: estimating Origin-Destination	
			Matrices	239
		9.1.3	Statistics: estimating contingency tables	241
		9.1.4	Demography: modeling interregional migra-	941
		015	tion Stochastic modeling: estimating transition	241
		9.1.0	probabilities	242
	02	Math	ematical Models for Matrix Balancing	243
	3.2	9.2.1	Matrix estimation formulations	244
		9.2.2	Network structure of matrix balancing	
			problems	246
		9.2.3	Entropy optimization models for matrix	
			balancing	248
	9.3	Iterat	ive Algorithms for Matrix Balancing	250
		9.3.1	The range-RAS algorithm (RRAS)	250
		9.3.2	The RAS scaling algorithm	254
		9.3.3	The range-DSS algorithm (RDSS)	255
		9.3.4	The diagonal similarity scaling (DSS)	050
			algorithm	258
	9.4	Notes	and References	259
10	Imag	ge Rec	onstruction from Projections	262
	10.1	Trans	form Methods and the Fully Discretized	
		Mode	1	264
	10.2	A Ful	ly Discretized Model for Positron Emission	
		Tomo	graphy	272
		10.2.1	The expectation-maximization algorithm	275
	10.3	A Jus	stification for Entropy Maximization in Image	

		Reconstruction	277
	10.4	Algebraic Reconstruction Technique (ART) for	
		Systems of Equations	280
	10.5	Iterative Data Refinement in Image Reconstruction	283
		10.5.1 The fundamentals of iterative data	002
		refinement	283
		10.5.2 Applications in medical imaging	292
	10.6	On the Selective Use of Iterative Algorithms for	200
	10 7	Inversion Problems	255
	10.7	Notes and References	301
11	The	Inverse Problem in Radiation Therapy Treatment	
	Plan	ning	306
	11.1	Problem Definition and the Continuous Model	308
		11.1.1 The continuous forward problem	309
		11.1.2 The continuous inverse problem	311
	11.2	Discretization of the Feasibility Problem	312
	11.3	Computational Inversion of the Data	317
	11.4	Consequences and Limitations	319
	11.5	Experimental Results	320
	11.6	Combination of Plans in Radiotherapy	328
		11.6.1 Basic definitions and mathematical modeling	328
		11.6.2 The feasible case	330
		11.6.3 The infeasible case	333
	11.7	Notes and References	338
12	Mult	icommodity Network Flow Problems	341
	12.1	Preliminaries	342
	12.2	Problem Formulations	343
		12.2.1 Transportation problems	344
		12.2.2 Multicommodity network flow problems	346
	12.3	Sample Applications	349
		12.3.1 Example one: Covering positions in stock	
		options	349
		12.3.2 Example two: Air-traffic control	350
	10.4	12.3.3 Example three: Routing of trame	351
	12.4	Eleve Decklore	250
		12.4.1 Row-action algorithm for quadratic	352
		transportation problems	352
		12.4.2 Extensions to generalized networks	356
		12.4.3 Row-action algorithm for quadratic	

		multicommodity transportation problems	361
	12.5	A Model Decomposition Algorithm for	
		Multicommodity Network Flow Problems	365
		12.5.1 The linear-quadratic penalty (LQP)	
		algorithm	365
	12.6	Notes and References	367
13	Plan	ning Under Uncertainty	371
	13.1	Preliminaries	372
	13.2	The Newsboy Problem	373
	13.3	Stochastic Programming Problems	374
		13.3.1 Anticipative models	375
		13.3.2 Adaptive models	375
		13.3.3 Recourse models	376
	13.4	Robust Optimization Problems	381
	13.5	Applications	384
		13.5.1 Robust optimization for the diet problem	384
		13.5.2 Robust optimization for planning capacity	
		expansion	385
		13.5.3 Robust optimization for matrix balancing	391
	13.6	Stochastic Programming for Portfolio Management	394
		13.6.1 Notation	396
		13.6.2 Model formulation	398
	13.7	Stochastic Network Models	400
		13.7.1 Split-variable formulation of stochastic	
		network models	402
		13.7.2 Component-wise representation of the	
		stochastic network problem	404
	13.8	Iterative Algorithm for Stochastic Network	405
	10.0	Optimization	405
	13.9	Notes and References	413
14	Deco	ompositions for Parallel Computing	417
	14.1	Vector-Random Access Machine (V-RAM)	418
		14.1.1 Parallel prefix operations	419
	14.2	Mapping Data to Processors	420
		14.2.1 Mapping a dense matrix	420
		14.2.2 Mapping a sparse matrix	421
	14.3	Parallel Computing for Matrix Balancing	424
		14.3.1 Data parallel computing with RAS	425
		14.3.2 Control parallel computing with RAS	427
	14.4	Parallel Computing for Image Reconstruction	428

		14.4.1 Parallelism within a block 14.4.2 Parallelism with independent blocks	430 431
		14.4.3 Parallelism between views	432
	14.5	Parallel Computing for Network-structured	
		Problems	433
		14.5.1 Solving dense transportation problems	434
		14.5.2 Solving sparse transportation problems	435
		14.5.3 Solving sparse transshipment graphs	437
	146	Parallel Computing with Interior Point Algorithms	400
	14.0	14.6.1 The communication schemes on a hypercube	430 130
		14.6.2 The parallel implementation on a hypercube	441
		14.6.3 An alternative parallel implementation	442
	147	Notes and References	443
	14.7		-110
15	Num	nerical Investigations	445
	15.1	Reporting Computational Experiments on Parallel	
		Machines	447
	15.2	Matrix Balancing	448
		15.2.1 Data parallel implementations	449
		15.2.2 Control parallel implementations	450
	15.3	Image Reconstruction	452
	15.4	Multicommodity Network Flows	454
		15.4.1 Row-action algorithm for transportation	455
		problems	455
		13.4.2 Row-action algorithm for multicommodity	158
		15.4.3 Linear-quadratic penalty (LOP) algorithm for	400
		multicommodity network flow problems	459
	15.5	Planning Under Uncertainty	461
	10.0	15.5.1 Interior point algorithm	461
		15.5.2 Row-action algorithm for nonlinear	
		stochastic networks	466
	15.6	Proximal Minimization with D-functions	469
		15.6.1 Solving linear network problems	470
		15.6.2 Solving linear stochastic network problems	472
	15.7	Description of Parallel Machines	476
		15.7.1 Alliant FX/8	476
		15.7.2 Connection Machine CM-2	477
		15.7.3 Connection Machine CM-5	477
		15.7.4 CRAY X-MP and Y-MP	477
		15.7.5 Intel iPSC/860	477

xxvi

15.8 Notes and References	478
Bibliography	481
Index	527