Contents

1 Radiation and initial-value problems for the wave equation 1
1.1 The radiation problem 1
1.1.1 Fourier integral representations 2
1.2 Green functions 7
1.2.1 Retarded and advanced Green functions 7
9
1.2.2 Frequency-domain Green function
12
. 3 Green-function solutions to the radiation problem 14
1.3.2 Representation of the radiated field in terms of boundary 16values via the Kirchhoff-Helmholtz theorem
1.3.3 The interior field solution16
18
1.4 The initial-value problem for the wave equation 20
1.4.1 Uniquenes 21
1.4.2 Field back propagation 21
1.5 Frequency-domain solution of the radiation problem22
1.5.1 The radiation pattern and the Sommerfeld radiation condition 23
1.6 Radiated power and energy 25
7 Non-radiating sources 27
1.7.1 Non-radiating sources in the frequency domain 29
1.7.2 A source decomposition theorem 31
1.7.3 Essentially non-radiating sources 35
1.8 Surface sources 36
1.8.1 Non-radiating surface source 38
1.8.2 Active object cloaking 39
Problems 41
2 Radiation and boundary-value problems in the frequency domain 43
2.1 Frequency-domain formulation of the radiation problem 43
2.1.1 Analytic-signal representation of time-domain fields 44
2.1.2 The Helmholtz equation45
45
21.4 The Sommerfeld radiation condition in dispersive media 47
2.1.5 Incoming- and conjugate-wave radiation conditions 48
2.2 Green functions 50
2.2.1 Green functions in two space dimensions
2.3 Time-domain Green functions 53
2.3.1 Key features of the time-domain Green functions 54
2.4 Green-function solution of the radiation problem 55
2.4.1 Solution of the radiation problem in two space dimensions 57
58
2.5 The Kirchhoff-Helmholtz representation of the radiated field59
2.6 Radiated power and energy 60
63
2.7.1 Non-radiating sources and the radiation pattern 63
2.7.2 Essentially non-radiating sources 64
2.8 Boundary-value problems for the Helmholtz equation 65
67
2.8.1 The interior boundary-value problem 67
68
2.8.2 The exterior boundary-value problem for closed boundaries
2.8.2 The exterior boundary-value problem for closed boundaries 702.8.4 Symmetry of the Green functions71
2.9 The Rayleigh-Sommerfeld boundary-value problem 72
2.9.1 The Rayleigh-Sommerfeld solution for two-dimensional wavefields 76
2.9.2 Rayleigh-Sommerfeld representation of the radiated field 77
2.10 Solution of the RS problem using the Helmholtz identities 78
2.11 Back propagation and the inverse RS boundary-value problem
79
79
2.11.1 The inverse RS boundary-value problem
2.11.1 The inverse RS boundary-value problem 80
2.12 Surface sources in dispersive media 82
2.12.1 Non-radiating surface sources 84
Further reading 85
3 Eigenfunction expansions of solutions to the Helmholtz equation 87
3.1 Separation of variables and the Sturm-Liouville problem 87
3.1.1 The Sturm-Liouville problem 88
3.2 Cartesian coordinates
90
90
Homogeneous pla 92
3.2.3 Plane-wave expansions involving evanescent plane waves 94
3.3 Spherical coordinates 99
3.4 Multipole expansions 104
3.4.1 Multipole expansions of the Dirichlet and Neumann Green
3.4.1 Multipole expansions of the Dirichlet and Neumann Green functions 107
3.4.2 Plane-wave expansions of the multipole fields 110
3.5 Circular cylindrical coordinates 111
3.6 Two-dimensional wavefield 113
3.6.1 Polar coordinates 113
Further reading116
Problems
4 Angular-spectrum and multipole expansions 118
4.1 The Weyl expansion 118
4.1.1 The angular-spectrum expansion for the conjugate-wave Green function 120
4.1.2 The angular-spectrum expansion of the incoming-wave Green function 121
4.1.3 Angle-variable forms of the Green-function expansions 122
4.2 The angular-spectrum expansion of the radiated field 125
4.2.1 The angle-variable form of the radiated field expansion 127
4.2.2 The angular spectrum and radiation pattern 127
4.2.3 The radiation pattern of a non-radiating source 129
4.3 Forward and back propagation using the angular spectrum 129
4.3.1 Back propagation from the radiation pattern 133
4.4 Stabilized field back propagation and the inverse boundary-value problem 133
4.4.1 Back propagation using the incoming-wave Green function 134
4.4.2 Back propagation using the conjugate-wave Green function and field time reversa 136
4.5 The angular-spectrum expansion of the scalar wavelet field 137
4.6 Angular-spectrum expansions in two space dimensions 139
4.6.1 The angular-spectrum expansion of the solution to the 2 D radiation problem 141
4.6.2 Two-dimensional forward and back propagation 142
4.6.3 The angle-variable 146
.7 The Fresnel approximation and Fresnel transform 147
4.7.1 The 3D Fresnel approximation and Fresnel transform 148
4.7.2 The 2D Fresnel approximation 151
4.8 Multipole expansions 153
4.8.1 Multipole expansion of the radiated field 154
4.8.2 Forward and back propagation using the multipole expansion 155
4.8.3 Back propagation in the interior boundary-value problem 157
4.8.4 Back propagation from the radiation pattern 158
4.9 Multipole expansions of two-dimensional wavefields 160
4.10 Connection between the angular-spectrum and multipole expansions 161
4.11 Radiated energy out of plane and spherical boundaries 163
4.11.1 Radiated energy into an infinite half-space 164
4.11.2 Radiated energy from a spherical region 166
Further reading 167
Problems 167
5 The inverse source problem169
5.1 The ISP for the wave equation 169
5.1.1 The ISP integral equation 171
5.1.2 The Porter-Bojarski integral equation 174
5.1.3 Time reversal and the back-propagated field 176
5.1.4 The ISP in terms of Dirichlet or Neumann boundary-value data 177
5.2 The ISP for surface source 179
5.2.1 The ISP for a planar surface source 180
5.2.2 Solving the ISP integral equation 180
5.23 Interpretation of the solution
183
.3 The ISP for 3D sources supported in plane-parallel slabs
184
184
.3.1 Solving for the source 186
$\begin{array}{ll}\text { 5.3.2 } & \text { Limiting } \\ \text { 5.3.3 } & \text { Time-rev }\end{array}$ 187
5 The Hilbert-space formulation of the ISP 188
5.4.1 The adjoint operator 191
5.4.2 Singular value decomposition 197
5.4.3 The range and null space of $\hat{\lambda}$ 198
5.4.4 The least-squares pseudo-inverse 198
5.4.5 Filtered back propagation and back-propagation imaging202203
5.5.1 Implementation of the SVD
55.2 The solution to the far-field ISP206
5.5.3 The algorithm point-spread function 209
5.5.4 Time reversal and back-propagation imaging
5.6 Picard's condition and minimum-sized source
214
5.7 Antenna synthesis and the far-field ISP in 2D space 215
5.7.1 Implementation of the SVD
217
5.7.2 The solution to the 2D far-field ISP and algorithm PSF 220
5.8 The limited-view problem22
5.8.1 The 2 D limited-view problem 223
5.8.2 Computing the singular system
225
Further reading 225
Scattering theory 229
6.1 Potential scattering theory 230
6.2 The Lippmann-Schwinger equation 232
6.2.2 The formal solution to the $L S$ equation 234
6.3 Scattering from homogeneous penetrable objects 235
6.3.1 Scattering from homogeneous spheres and cylinders236
6.3.3 Scattering from a homogeneous cylinder 238
6.3.4 Scattering from concentric cylinders 239
6.4 The scattering amplitud 240
6.4.1 The scattering amplitude in 2D space 242
6.4.2 Reciprocity and translation theorems for the scattering amplitude245
6.5 Computing the scater fied from the scating 246
6.5.1 Field scattered by an arbitrary incident wave and the general zed scattering amplitude 247
6.5.2 Computing the scattering amplitude from scattered field data over a plane 248
6.5.3 Multipole expansion of the scattered field 249
6.5.4 Multipole expansions of 2D scattered fields 251
6.6 The transition operator6.6.1 The Lippmann-Schwinger equation for the transition operator6.7 The Born series6.7.1 The Born approximation254
6.7.2 In255
6.8 The Born approximation for spherically and cylindrically symmetric 256
scattering potential 259
6.8.1 Born scattering from homogeneous cylinders 261
6.8.2 The error between the Born and exact scattering amplitudes 262
6.9 Non-scattering potentials 265
Non-scattering potentials within the Born approximation 267
6.9.2 Incident plane waves 267
6.9.3 The relationship between the two Born non-scattering potentials 269
6.9.5 Essentially non-scattering potentials 270
6.10 The Rytov approximation 271
6.10.1 The Ricatti equation for the complex phase of the field 272
6.10.2 The Liouville-Neumann expansion for the phase 273
6.10.3 The Rytov approximation 274
6.10.4 The short-wavelength limit275
6.10.5 The Rytov transformation 275
6.10.6 A comparison of the Born and Rytov approximations 276
6.10.7 The hybrid approximation
280
6.11 Incident spherical waves and slant stacking 282
king from arbitrary surface 282
Further reading 283
Problems 283
Surface scattering and diffraction 285
7.1 Formulation of the scattering problem for non-penetrable scatterers 286
7.1.1 The scattering amplitude 287
7.1.2 Liouville-Neumann expansion 288
7.2 Scattering from simple shapes 289
7.2.1 Scattering from an infinite Dirichlet or Neumann plane 289
7.2.2 Scattering from a sphere 291
7.2.3 Scattering of a plane wave from a cylinder 293
7.3 The physical-optics approximation
298
73. Sime-wave incidence 299
7.4 The Bojarski transformation and linearized inverse surface scattering299
7.4.1 The generalized Bojarski transformation 304
7.4.2 Inverse scattering within the PO approximation
306
7.5 Kirchhoff diffraction theory
7.5.1 The Rayleigh-Sommerfeld alternative to the Kirchhoff diffraction formula 308
7.5.2 More general diffraction problems 309
7.5.3 Algorithmic implementation of the diffraction formulas314
7.6 Inverse diffraction 314
7.6.1 Inverse diffraction using back propagation 316
7.6.2 The SVD formulation of the inverse diffraction problem 316
7.6.4 The Slepian-Pollak theory319
7.7 Determining the shape of a surface scatterer 320
7.7.1 Surface reconstruction via back propagation 321
7.7.2 The SVD approach to surface reconstruction 325
Problems 332
8 Classical inverse scattering and diffraction tomography 333
8.1 Born inverse scattering from far-field dat 335
8.1.1 Born inversion from ideal data 339
8.1.2 The filtered back-propagation algorithm 339
8.1.3 Inverse scattering identity342
nnsion 344
8.2.1 Non-perfect data 345
8.2.2 Limited-data case I346
346
8.2.3 Limited-data case II 346
8.3 Non-uniqueness and non-scattering scatterer 347
8.3.1 Non-scattering potentials within the Born approximation 348
349
8.4 Hilbert-space formulation of Born inverse scattering 349
350
8.4.1 Adjoint and composite operators
351
351
8.4.2 Singular value decomposition
8.4.2 Singular value decomposition 353
8.5 Born inversion using non-plane-wave probes and arbitrary measure-ment surfaces
8.5.1 Data collected on arbitrary surfaces 354
8.5.2 Incident spherical waves 357
8.6 Iterative algorithms 358
8.6.1 Limited-data problems 358
359
8.6.2 Incorporation of constraints
8.7 Tomographic formulation of inverse scattering 360
8.7.1 The Rytov approximation 3618.7.2 The short-wavelength limit of DT8.7.3 Computed tomography361
8.7.4 The projection-slice theorem
8.7.5 The filtered back-projection algorithm8.7.6 Computed tomography of circularly symmetric objects
8.8 Diffraction tomography364
3678.8.8.2 Reduction to a set of 2 D inverse scattering problemsDiffraction tomography in two space dimension370
8.9.2 The filtered back-propagation algorithm 373
8.9.3 Diffraction tomography of circularly symmetric objects 375
8.10 Simulations of DT with ideal Rytov data 378
8.11 Three-dimensional diffraction tomography 384Further reading
Problems 386
Waves in inhomogeneous media 387
9.1 Background-medium Green functions 388
9.1.1 The reciprocity condition for the Green functions 389
9.1.2 Plane-wave scattering states390
9.2 The radiation problem in non-uniform backgrounds 393
9.2.1 The Green-function solution to the radiation problem 393
9.2.2 The Kirchhoff-Helmholtz representation of the radiated fiel 394
9.2.3 The Porter-Bojarski integral equation 395
9.3 Generalized plane-wave expansions 397
9.3.1 Generalized plane-wave expansions to the homogeneous Helmholtz equation in a non-uniform medium 397
9.3.2 Generalized angular-spectrum expansions 400
9.3.3 Angular-spectrum expansion of the radiated field in non- uniform media 401
9.4 Non-radiating sources in non-uniform media 403
9.4.1 Non-radiating sources and the radiation pattern 404
9.5.1 General formulation 405
9.5.2 Singular value decomposition 406
9.5.3 The least-squares pseudo-inverse solution of the ISP 407
9.6 Solution of the ISP for spherically symmetric background 408
9.6.1 Solution of the ISP for a piecewise-constant spherically symmetric background 411
9.6.2 Super-resolution 413
9.7 Scattering in a non-uniform background medium
9.7 Scattering in a non-uniform background medium 413
9.8 The distorted-wave Born approximation 415
9.8.1 The DWBA for a pair of concentric homogeneous cylinders 416
9.9 Foldy-Lax theory422
9.10 Inverse scattering within the DWBA
9.10.1 The far-field limited-view ISCP 424
9.10.2 Back-propagation imaging 425
9.10.3 The limited-view problem in a homogeneous background 426
9.11 The ISCP using data generated and acquired by sets of antennas 432
Further reading 432Problems
434
10 Time-reversal imaging for systems of discrete scatterers
435
10.1 Experimental time-reversal imaging 436
10.2 Time-reversal imaging using a finite set of antennas 438
10.2.1 Experimental time-reversal imaging 438
10.2.2 Eigenvectors of the time-reversal matrix 440
10.2.3 Focusing with the eigenvectors of the time-reversal matrix 443
10.3 Computational time-reversal imagin 444
10.3.1 Singular value decomposition of the multistatic data matrix 446
10.3.2 DORT 447
10.3.3 Time-reversal MUSIC
10.3.3 Time-reversal MUSIC 452
453
10.4 The inverse scattering problem 456
Further reading 457
Problems 457
11 The electromagnetic field 459
11.1 Maxwell equations 459
11.1.1 Maxwell equations for a homogeneous isotropic medium 460
11.1.2 Maxwell equations in the spatial frequency domain 461
11.2 The Helmholtz theorem461
11.3 The EM radiation problem
464
11.3.1 The dyadic Green function
466
466
11.3.2 The radiation patterns 467
11.4 Angular-spectrum expansions of the radiated field 468
1.4.1 The angle-variable form of the angular-spectrum expansion of the EM field 469
11.4.2 Back propagation from the radiation patterns 470
1.4.3 The Cartesian-variable form of the angular-spectrum expansion of the EM field 471
1.4.4 Forward and back propagation from planar boundary-value dat 472
11.5 The Whittaker representation of the radiated fields 473
11.5.1 Boundary-value problems and field back propagation using the Whittaker representation 476
1.6 Debye representation and multipole expansions of radiated fields 479
11.6.1 Multipole expansion of the radiated field 482
11.7 Vector spherical-harmonic expansion of the radiation pattern 484
11.8 The EM inverse source problem 485
11.8.1 The EM ISP for sources supported in spherical regions 485
1.9 Electromagnetic scattering theory 488
11.9.1 The Lippmann-Schwinger equations 489
11.9.2 Electromagnetic scattering amplitudes 490
11.10 The Born approximation 491
11.10.1 Born scattering amplitudes 492
11.10.2 Born inverse scattering 493
Further reading 494
Appendix A Proof of the scattering amplitude theorems 496
A. 1 Proof of the reciprocity theorem 496
A. 2 Proof of the translation theorem 497
A. 3 Proof of the optical theorem 497
Appendix B Derivation of the generalized Weyl expansion 501
B. 1 Off-shell Green functions and scattering wave states 501
B. 2 Derivation of the generalized Weyl expansion 502
References 505
Index 515

