Contents

Pre	face		page 1x
1	The wavelet transform		
	1.1	Multiscale methods	1
	1.2	The continuous wavelet transform	9
	1.3	Examples of wavelet functions	10
	1.4	The discrete wavelet transform	13
	1.5	Multiresolution based on the median transform	40
	1.6	Multiresolution and mathematical morphology	43
2	Multiresolution support and filtering		
	2.1	Noise modeling	46
	2.2	Multiresolution support	55
	2.3	Filtering	61
	2.4	Image comparison using a multiresolution quality	
		criterion	74
3	Deconvolution		
	3.1	Introduction to deconvolution	77
	3.2	Regularization using the multiresolution support	79
	3.3	Multiscale entropy and image restoration	90
	3.4	Image restoration for aperture synthesis	104
4	1D :	signals and Euclidean data analysis	120
	4.1	Analysis of 1D signals: spectral analysis	120
	4.2	Wedding the wavelet transform and multivariate da	ta
		analysis	131
	4.3	The Kohonen self-organizing map in wavelet space	137
	4.4	Multiresolution regression and forecasting	145
5	Geometric registration		
	5.1	Image distortions	153
	5.2	Geometrical image registration	155

viii Contents

	5.3	Ground control points	158	
	5.4	Image registration using the wavelet transform	160	
	5.5	Application	165	
	5.6	Error analysis	180	
	5.7	Conclusion on multiscale geometric registration	183	
6	Disp	parity analysis in remote sensing	185	
	6.1	Definitions	185	
	6.2	Disparity mapping	188	
	6.3	Disparity mapping with the wavelet transform	198	
	6.4	Image registration	202	
	6.5	Application to real images	202	
	6.6	Conclusion on disparity analysis	214	
7	Ima	ge compression	217	
	7.1	Pyramidal median transform and image compression	218	
	7.2	Examples and assessments	220	
	7.3	Image transmission over networks	225	
	7.4	Conclusion on image compression	229	
8	Obje	ect detection and point clustering	231	
	8.1	The problem and the data	231	
	8.2	Pyramidal median transform and Minkowski		
		operators	232	
	8.3	Conclusion on astronomical object detection	235	
	8.4	Object detection and clustering in point patterns	235	
	8.5	Conclusion: cluster analysis in constant time	241	
9	Mul	tiscale vision models	243	
	9.1	Artificial vision and astronomical images	243	
	9.2	Object definition in wavelet transform space	244	
	9.3	Partial reconstruction	249	
	9.4	Applications to a real image	256	
	9.5	Vision models and image classes	260	
Αr	PENI	DIX A Variance stabilization	263	
	A.1	Mean and variance expansions	263	
	A.2		264	
	A.3	Study of the expansions for the variance	265	
	A.4	Variance-stabilizing transformation	265	
ΑF		DIX B Software information	266	
•				
	0.7			
1114	C.A.		286	