Contents

1	Intro	duction		1
	1.1	The set	nse of vision	1
		1.1.1	Stereo	4
		1.1.2	Structure from motion	5
		1.1.3	Photometric stereo and other techniques based on	
			controlled light	5
		1.1.4	Shape from shading	6
		1.1.5	Shape from texture	6
		1.1.6	Shape from silhouettes	6
		1.1.7	Shape from defocus	6
		1.1.8	Motion blur	7
		1.1.9	On the relative importance and integration of visual cues	7
		1.1.10	Visual inference in applications	8
	1.2	Preview	w of coming attractions	9
		1.2.1	Estimating 3-D geometry and photometry with a finite	
			aperture	9
		1.2.2	Testing the power and limits of models for	
			accommodation cues	10
		1.2.3	Formulating the problem as optimal inference	11
		1.2.4	Choice of optimization criteria, and the design of	
			optimal algorithms	12
		1.2.5	Variational approach to modeling and inference from	
			accommodation cues	12

2	Basic	models of image formation	14
	2.1	The simplest imaging model	14
		2.1.1 The thin lens	14
		2.1.2 Equifocal imaging model	16
		2.1.3 Sensor noise and modeling errors	18
		2.1.4 Imaging models and linear operators	19
	2.2	Imaging occlusion-free objects	20
		2.2.1 Image formation nuisances and artifacts	22
	2.3	Dealing with occlusions	23
	2.4	Modeling defocus as a diffusion process	26
		2.4.1 Equifocal imaging as isotropic diffusion	28
		2.4.2 Nonequifocal imaging model	29
	2.5	Modeling motion blur	30
		2.5.1 Motion blur as temporal averaging	30
		2.5.2 Modeling defocus and motion blur simultaneously	34
	2.6	Summary	35
3	Some	e analysis: When can 3-D shape be reconstructed from blurred	
	imag	es?	37
	3.1	The problem of shape from defocus	38
	3.2	Observability of shape	39
	3.3	The role of radiance	41
		3.3.1 Harmonic components	42
		3.3.2 Band-limited radiances and degree of resolution	42
	3.4	Joint observability of shape and radiance	46
	3.5	Regularization	46
	3.6	On the choice of objective function in shape from defocus	47
	3.7	Summary	49
4	Least	t-squares shape from defocus	50
	4.1	Least-squares minimization	50
	4.2	A solution based on orthogonal projectors	53
		4.2.1 Regularization via truncation of singular values	53
		4.2.2 Learning the orthogonal projectors from images	55
	4.3	Depth-map estimation algorithm	58
	4.4		60
		4.4.1 Explicit kernel model	60
		4.4.2 Learning the kernel model	61
	4.5	Summary	65
5	Enfo	rcing positivity: Shape from defocus and image restoration by	~~
	minir	mizing 1-divergence	69
	5.1	Information-divergence	70
	5.2	Alternating minimization	71
	5.3	Implementation	76

	5.4	Examples	76
		5.4.1 Examples with synthetic images	76
		5.4.2 Examples with real images	78
	5.5	Summary	79
6	Defoc	cus via diffusion: Modeling and reconstruction	87
	6.1	Blurring via diffusion	88
	6.2	Relative blur and diffusion	89
	6.3	Extension to space-varying relative diffusion	90
	6.4	Enforcing forward diffusion	91
	6.5	Depth-map estimation algorithm	92
		6.5.1 Minimization of the cost functional	94
	6.6	On the extension to multiple images	95
	6.7	Examples	96
		6.7.1 Examples with synthetic images	97
		6.7.2 Examples with real images	99
	6.8	Summary	99
7	Deali	ng with motion: Unifying defocus and motion blur	106
	7.1	Modeling motion blur and defocus in one go	107
	7.2	Well-posedness of the diffusion model	109
	7.3	Estimating Radiance, Depth, and Motion	110
		7.3.1 Cost Functional Minimization	111
	7.4	Examples	113
		7.4.1 Synthetic Data	114
		7.4.2 Real Images	117
	7.5	Summary	118
8	Deali	ng with multiple moving objects	120
	8.1	Handling multiple moving objects	121
	8.2	A closer look at camera exposure	124
	8.3	Relative motion blur	125
		8.3.1 Minimization algorithm	126
	8.4	Dealing with changes in motion	127
		8.4.1 Matching motion blur along different directions	129
		8.4.2 A look back at the original problem	131
		8.4.3 Minimization algorithm	132
	8.5	Image restoration	135
		8.5.1 Minimization algorithm	137
	8.6	Examples	138
	5.0	8.6.1 Synthetic data	138
		8.6.2 Real data	141
	87	Summary	146
	0.7	Summary	110

9	Deali	ng with occlusions	147
	9.1	Inferring shape and radiance of occluded surfaces	148
	9.2	Detecting occlusions	150
	9.3	Implementation of the algorithm	151
	9.4	Examples	152
		9.4.1 Examples on a synthetic scene	152
		9.4.2 Examples on real images	154
	9.5	Summary	157
10	Final	remarks	159
A	Conc	epts of radiometry	161
	A.1	Radiance, irradiance, and the pinhole model	161
		A.1.1 Foreshortening and solid angle	161
		A.1.2 Radiance and irradiance	162
		A.1.3 Bidirectional reflectance distribution function	163
		A.1.4 Lambertian surfaces	163
		A.1.5 Image intensity for a Lambertian surface and a pinhole	
		lens model	164
	A.2	Derivation of the imaging model for a thin lens	164
B	Basic	primer on functional optimization	168
2	B 1	Basics of the calculus of variations	169
	D .1	B 1 1 Functional derivative	170
		B.1.2 Euler–Lagrange equations	171
	B 2	Detailed computation of the gradients	172
	13.12	B.2.1 Computation of the gradients in Chapter 6	172
		B.2.2 Computation of the gradients in Chapter 7	174
		B 2 3 Computation of the gradients in Chapter 8	176
		B.2.4 Computation of the gradients in Chapter 9	185
С	Proof	fe	190
U	C^{1}	Proof of Proposition 3.2	190
	C_{2}	Proof of Proposition 3.5	191
	C.2	Proof of Proposition A 1	192
	C.5	$\mathbf{Proof of Proposition 5.1}$	192
	C.4	Proof of Proposition 7.1	195
-	~		10.
D	Calib	bration of defocused images	197
	D.1	Zooming and registration artifacts	197
	D.2	Telecentric optics	200
Е	Мат	LAB [®] implementation of some algorithms	202
	E.1	Least-squares solution (Chapter 4)	202

xiv Contents

	E.2 E.3 E.4	I-divergence solution (Chapter 5)	212 221 229	
F	Regularization F.1 Inverse problems F.2 Ill-posed problems F.3 Regularization F.3.1 Tikhonov regularization F.3.2 Truncated SVD		 232 232 234 235 237 238 	
References				
In	Index			