Contents

I. Introduction	1
l.1 Fusion energy	1
I.2 Plasma confinement concepts	5
I.3 Tokamak	8
I.4 Koreas Superconductiong Tokamak Advanced Researches (KSTAR)	13
I.4.1 Overview of KSTAR	13
I.4.2 Heating systems for KSTAR	15
I.4.3 Diagnostics system for KSTAR	16
II. Classical and Neoclassical transport theory	24
II.1Classical transport	25
II.2 Neoclassical transport	
II.2.1. Pfirsh-Schluter regime	34
II.2.2. Banana regime	
II.2.3 Plateau regime	
II. 3 Neooclassical theory for plasma rotation	
II. 4 MHD rotation	
III. Momentum transport study	
III.1 Introduction	
III.2 Experimental observations and results	45
III.2.1 NBI	45
III.2.2. ICRH	
III.2.3. ECRH	53
III.2.4 Ohmic plasmas	55
III.2.5 Error field	57
III.3 Theoretical models for plasma rotation	62
III.3.1 Residual stress	63
III.3.2 Momentum pinch	70
III.3.3 Neoclassical toroidal viscosity	72
IV. Charge Exchange Spectroscopy on the KSTAR	
IV.1 Introduction	
IV.2 Principle	

IV.3 Charge exchange spectroscopy on the KSTAR	
IV.3.1 Introduction	
IV.3.2 Optics	90
IV.3.3 NBI system	95
IV.3.4 Spectrometers	97
IV.3.5 CCD control system	
IV.3.6 Data archiving system	109
IV.3.7 Data analysis system	110
IV.3.8 Uncertainties on the charge exchange spectrum	121
V. Dynamics of ion temperature and toroidal rotation profiles in KSTAR plasmas	131
V.1 Sawtooth oscillation	131
V.2 Mode locking	134
V.3 Ohmic plasma	142
V.4 Toroidal rotation damping during ECRH	145
V.5 Toroidal rotation damping by non-resonant magnetic perturbations	155
V.6 LH transition and H-L back transition	158
VI. Transport analysis	166
VI.1 Electron and ion heat balance equations	166
VI.2 Momentum balance equation	173
VI.3 Normalized poloidal flux and toroidal flux	174
VI.4 Transport analysis results from NBI-heated L-mode and H-mode plasmas	176
VII. ECRH effects on the toroidal rotation	
VII.1 Toroidal rotation speed reduction in co-current directed rotating plasma	190
VII.2 Toroidal rotation speed reduction in counter-current directed rotating plasma	
VII.3 Observation of internal kink modes	
VII.4 NTV torque induced by internal kink mode during on-axis ECRH heating	
VII.5 The evolution of the toroidal rotation profiles simulated with the NTV torque de	nsity
	198
VII.6 Conclusions and discussions	
VIII. Summary and Discussions (not included yet)	
References (not finished yet)	207