Contents

1	Intr	oduction	1			
	1.1	Fusion	1			
		1.1.1 Magnetic confinement	2			
		1.1.2 Magnetic equilibrium	3			
		1.1.3 Classical and neo-classical transport	3			
		1.1.4 Turbulent transport	4			
	1.2	Measuring transport	$\overline{5}$			
	1.2	1.2.1 Steady-state and perturbative transport analysis	5			
		1.2.2 Overview of perturbative experiments	6			
		1.2.2 Perturbative experiments: actuator and sensor	7			
	1.3	Methods for estimating transport coefficients	.9			
	1.4		11			
	1.4		11			
			12			
	1.5		14			
	1.0		1-1			
2	Mathematical modeling of heat transport in tokamaks and stel-					
	lara	tors	17			
	2.1	Transport modeling	18			
		2.1.1 Conservation of energy and particles	18			
		2.1.2 Perturbative transport analysis	19			
		2.1.3 Slab geometry representation and its relationship to cylin-				
			20			
	2.2		21			
			21			
			22			
	2.3		23			
		2.3.1 Semi-infinite domain and logarithmic temperature deriva-				
			23			

ii

Contents

	$2.4 \\ 2.5$	2.3.2 Transfer function and spatial derivatives	$26 \\ 28 \\ 29 \\ 31$
3	\mathbf{Est}	imation of the transport coefficients using slab geometry	
	(ser	ni-infinite)	33
	3.1	Derivation of explicit approximations based on slab geometry \ldots	34
		3.1.1 Approximations for χ in the presence V and τ_{inv}	34
		3.1.2 Approximations for V and τ_{inv}	35
		3.1.3 Approximations assuming $\tau_{inv} = 0$	36
	3.2	Estimating χ under influence of V and τ_{inv}	37
		3.2.1 Diffusivity only	37
		3.2.2 Diffusivity and damping	38
		3.2.3 Diffusivity, convectivity, and damping	39
	3.3	Estimating the convectivity and damping	41
		3.3.1 Estimation of V and τ_{inv} in a semi-infinite cylindrical ge-	41
		3.3.2 The effect of boundary conditions and radial dependent	41
		profiles	43
	3.4	Summary	45
	0.1	Summay	10
4	Est	imation of the transport coefficients for heat waves propa-	
	gati	ing outwards (semi-infinite)	49
	4.1	Derivation of explicit approximations	50
	4.1	4.1.1 Continued fractions	50
	4.1	4.1.1Continued fractions	$\begin{array}{c} 50 \\ 52 \end{array}$
		4.1.1Continued fractions4.1.2Asymptotic expansions4.1.3Multiple harmonics	$50 \\ 52 \\ 55$
	4.14.2	4.1.1Continued fractions4.1.2Asymptotic expansions4.1.3Multiple harmonicsOutward solutions	50 52 55 56
		4.1.1Continued fractions4.1.2Asymptotic expansions4.1.3Multiple harmonicsOutward solutions4.2.1Overview of possible explicit approximations	$50 \\ 52 \\ 55 \\ 56 \\ 57$
		4.1.1Continued fractions4.1.2Asymptotic expansions4.1.3Multiple harmonics4.1.3Multiple harmonics0utward solutions4.2.1Overview of possible explicit approximations4.2.2Diffusivity only	50 52 55 56 57 57
		4.1.1Continued fractions4.1.2Asymptotic expansions4.1.3Multiple harmonics4.1.3Multiple harmonicsOutward solutions4.2.1Overview of possible explicit approximations4.2.2Diffusivity only4.2.3Diffusivity and damping only	50 52 55 56 57 57 61
		4.1.1Continued fractions4.1.2Asymptotic expansions4.1.3Multiple harmonics4.1.3Multiple harmonics0utward solutions4.2.1Overview of possible explicit approximations4.2.2Diffusivity only4.2.3Diffusivity and damping only4.2.4Diffusivity and convectivity with $\tau_{inv} = 0$ and $\tau_{inv} = 2$	$50 \\ 52 \\ 55 \\ 56 \\ 57 \\ 57 \\ 61 \\ 62$
	4.2	4.1.1Continued fractions4.1.2Asymptotic expansions4.1.3Multiple harmonics4.1.3Multiple harmonics0utward solutions4.2.1Overview of possible explicit approximations4.2.2Diffusivity only4.2.3Diffusivity and damping only4.2.4Diffusivity and convectivity with $\tau_{inv} = 0$ and $\tau_{inv} = 2$ 4.2.5Summary	$50 \\ 52 \\ 55 \\ 56 \\ 57 \\ 57 \\ 61 \\ 62 \\ 62$
	4.24.3	4.1.1Continued fractions4.1.2Asymptotic expansions4.1.3Multiple harmonics4.1.3Multiple harmonicsOutward solutions4.2.1Overview of possible explicit approximations4.2.2Diffusivity only4.2.3Diffusivity and damping only4.2.4Diffusivity and convectivity with $\tau_{inv} = 0$ and $\tau_{inv} = 2$ 4.2.5SummarySummaryChoice and validation of approximations	$50 \\ 52 \\ 55 \\ 56 \\ 57 \\ 61 \\ 62 \\ 62 \\ 63$
	4.2	4.1.1Continued fractions4.1.2Asymptotic expansions4.1.3Multiple harmonics4.1.3Multiple harmonics0utward solutions4.2.1Overview of possible explicit approximations4.2.2Diffusivity only4.2.3Diffusivity and damping only4.2.4Diffusivity and convectivity with $\tau_{inv} = 0$ and $\tau_{inv} = 2$ 4.2.5Summary	$50 \\ 52 \\ 55 \\ 56 \\ 57 \\ 57 \\ 61 \\ 62 \\ 62$
5	4.2 4.3 4.4	4.1.1Continued fractions4.1.2Asymptotic expansions4.1.3Multiple harmonics4.1.3Multiple harmonicsOutward solutions4.2.1Overview of possible explicit approximations4.2.2Diffusivity only4.2.3Diffusivity and damping only4.2.4Diffusivity and convectivity with $\tau_{inv} = 0$ and $\tau_{inv} = 2$ 4.2.5SummarySummaryChoice and validation of approximationsConclusions and summary	$50 \\ 52 \\ 55 \\ 56 \\ 57 \\ 61 \\ 62 \\ 62 \\ 63$
5	4.2 4.3 4.4 Est	4.1.1Continued fractions4.1.2Asymptotic expansions4.1.3Multiple harmonics4.1.3Multiple harmonicsOutward solutions4.2.1Overview of possible explicit approximations4.2.2Diffusivity only4.2.3Diffusivity and damping only4.2.4Diffusivity and convectivity with $\tau_{inv} = 0$ and $\tau_{inv} = 2$ 4.2.5SummarySummaryChoice and validation of approximationsConclusions and summaryimation of the transport coefficients for heat waves propa-	$50 \\ 52 \\ 55 \\ 56 \\ 57 \\ 61 \\ 62 \\ 62 \\ 63$
5	4.2 4.3 4.4 Est	4.1.1Continued fractions4.1.2Asymptotic expansions4.1.3Multiple harmonics4.1.3Multiple harmonicsOutward solutions4.2.1Overview of possible explicit approximations4.2.2Diffusivity only4.2.3Diffusivity and damping only4.2.4Diffusivity and convectivity with $\tau_{inv} = 0$ and $\tau_{inv} = 2$ 4.2.5SummarySummaryChoice and validation of approximationsConclusions and summary	$50 \\ 52 \\ 55 \\ 56 \\ 57 \\ 61 \\ 62 \\ 63 \\ 65$
5	4.2 4.3 4.4 Est gati	4.1.1Continued fractions4.1.2Asymptotic expansions4.1.3Multiple harmonics4.1.3Multiple harmonicsOutward solutions4.2.1Overview of possible explicit approximations4.2.2Diffusivity only4.2.3Diffusivity and damping only4.2.4Diffusivity and convectivity with $\tau_{inv} = 0$ and $\tau_{inv} = 2$ 4.2.5SummarySummaryChoice and validation of approximationsConclusions and summaryimation of the transport coefficients for heat waves propating inwards (symmetry)	50 52 55 56 57 61 62 62 63 65 67
5	4.2 4.3 4.4 Est gati	4.1.1Continued fractions4.1.2Asymptotic expansions4.1.3Multiple harmonics4.1.3Multiple harmonicsOutward solutions4.2.1Overview of possible explicit approximations4.2.2Diffusivity only4.2.3Diffusivity and damping only4.2.4Diffusivity and convectivity with $\tau_{inv} = 0$ and $\tau_{inv} = 2$ 4.2.5SummarySummaryChoice and validation of approximationsConclusions and summaryimation of the transport coefficients for heat waves propaing inwards (symmetry)Derivation of explicit approximations using continued fractions	50 52 55 56 57 61 62 62 63 65 67
5	4.2 4.3 4.4 Est gati	4.1.1Continued fractions4.1.2Asymptotic expansions4.1.3Multiple harmonics4.1.3Multiple harmonicsOutward solutions4.2.1Overview of possible explicit approximations4.2.2Diffusivity only4.2.3Diffusivity and damping only4.2.4Diffusivity and convectivity with $\tau_{inv} = 0$ and $\tau_{inv} = 2$ 4.2.5SummarySummaryChoice and validation of approximationsConclusions and summaryImation of the transport coefficients for heat waves propating inwards (symmetry)Derivation of explicit approximations using continued fractions5.1.1Derivation of inward approximations for the diffusivity and	50 52 55 56 57 61 62 63 65 65 67

		5.2.1	Overview of possible explicit approximations	71	
		5.2.2	Selection of interesting approximations	75	
		5.2.3	Diffusivity and damping only	76	
		5.2.4	Diffusivity and convectivity with $\tau_{inv} = 0$ and $\tau_{inv} = 2$.	76	
	5.3	Concl	usion and summary	77	
6	Estimation of the diffusivity taking frequency measurement un-				
			s into account	81	
	6.1	Distri	butions of phase and amplitude and its spatial derivatives .	83	
		6.1.1	Gaussian noise as the result of the central limit theorem .	83	
		6.1.2	Normal complex circular distributed noise	84	
		6.1.3	Amplitude and phase distributions and their confidence		
			bounds	85	
		6.1.4	Distributions of ϕ' and A'/A	87	
	6.2	Distri	butions of the diffusivity χ	90	
		6.2.1	Inverse non-central chi-squared distribution	90	
		6.2.2	Confidence bounds non-central inverse chi-squared distri-		
			bution	91	
		6.2.3	Inverse product distribution function	92	
	6.3		ating means and (co-)variances from measurements \ldots .	94	
		6.3.1	Noise distribution of ASDEX Upgrade measurements	94	
		6.3.2	Estimating the Fourier coefficients and variances	95	
		6.3.3	Resulting A'/A and ϕ' for AUG 17175 at $\rho_t = 0.473$ and	00	
	6.4	Futin	$\rho_t = 0.484 \dots $	98	
	0.4	6.4.1	ating χ	100	
		6.4.1	Combining amplitude and phase estimates	$100 \\ 102$	
		6.4.2	Combining different harmonics for ϕ' and A'/A only Combining different harmonics using the product $\phi'A'/A$	$103 \\ 106$	
		6.4.3	Collibration errors \ldots	$\frac{106}{110}$	
		6.4.5	Summary estimating χ with confidence	111	
	6.5		usions and discussion \ldots	$111 \\ 113$	
	0.0	Conci		119	
7			y domain sample maximum likelihood estimation fo	r	
	-	•	dependent parameter estimation in PDEs	115	
	7.1		luction	115	
	7.2	Model	9	118	
		7.2.1	Considered partial differential equation	119	
		7.2.2	Local domain based on two measurements	119	
		7.2.3	Local domain based on three measurements	120	
		7.2.4	Change of variables	120	
	7.3		le maximum likelihood estimator	121	
		7.3.1	Error model: errors-in-variables	122	
		7.3.2	Maximum likelihood cost	122	

iii

iv	Contents

	7.4 7.5	7.3.3Optimization and confidence bounds	$123 \\ 124 \\ 124 \\ 125 \\ 126 \\ 126 \\ 127 \\ 129$
8	Con	clusions, discussion and recommendations	131
	8.1	Conclusions	131
	8.2	Discussion and recommendations	135
		8.2.1 Improvement of the estimation	135
		8.2.2 Study of transport	138
		8.2.3 Extension to other fields	139
Α	Ana	lytic eigenfunctions of PDEs	141
	A.1	The Bessel and confluent hypergeometric ODEs	141
	A.2	Power series representation	142
		A.2.1 Example: derivation of power series solution of the Bessel	
		function of first kind of order $\nu = 0$	143
	A.3 A.4	Numerical evaluation	145
		tions	$\begin{array}{c} 147 \\ 147 \end{array}$
		A.A.I Oymanical geometry with constant coomorenes	
В	\mathbf{Der}	ivation of approximations using continued fractions	151
	B.1	Continued <i>J</i> -fraction of the ratio of Bessel functions of the second	1
	Ъa	kind	151
	B.2	Continued C-fraction of the ratio of Bessel functions of the second kind	152
	B.3	Continued <i>T</i> -fraction of the ratio of Bessel functions of the first	104
	1.0	kind	152
	B.4	Continued C-fraction of confluent hypergeometric functions	153
	B.5	Continued J-fraction in case $V = \tau_{inv} = 0$	156
	B.6	Approximation for the continued S-fraction for $V = \tau_{inv} = 0$	156
	B.7	Asymptotic expansion based on the Bessel function of the second	
		kind	157
\mathbf{C}	Dist	tribution functions of A and ϕ and numerical calculation ϕ	of
U		fidence bounds	
	C.1	Distributions of amplitude and phase	159
	C.2	Numerical calculation confidence bounds	

Contents

Summary	175
Societal summary	179
Acknowledgements	181
List of publications	185
Curriculum vitae	189

v