CONTENTS

									PAGE		
Foreword	•••	•••		•••	•••	•••	•••	•••	v		
Preface			•••			•••	•••	•••	ix		
1 INTROD	UCTORY	SURV	EY	•••	•••	•••			1		
Intr	oduction	ı			•••	•••	•••	•••	1		
Mode	es of Gr	of Growth				•••		•••	3		
Theo	ries of (Crystal	Growt	h	•••	•••	•••	•••	- 3		
Concept of Minimum Total Surface Free Energy											
2 Атоміс	Тнео	RY OF	CRYST	al Gr	OWTH:	Grow	TH OF	А			
$\mathbf{P}\mathbf{E}$	RFECT	Crysta	L		•••	•••	•••	•••	9		
Close	-packed	d Plane	s	•••	•••	•••	•••	•••	9		
Equi	librium	Struct	ure of a	ı Crystz	al Surfa	ice	•••	•••	9		
Conc	entratio	on of K	inks in	a step		•••	•••	•••	12		
Surfa	ce mig	ration of	of adsor	bed M	olecule	s	•••	•••	13		
Rate	of adva	ance of	a straig	ght step)	•••	•••	•••	14		
Surfa	ce Nuc	leation	•••	•••	•••	•••	•••	•••	16		
Sum	nary	•••	•••	•••	•••	•••	•••	•••	20		
3 Disloc	ATIONS A	AND TH	e Grov	VIH OF	AN IMP	PERFECT	CRYSI	AL	22		
Dislo	cations		•••		•••			•••	22		
Edge	Disloc	ations	•••	•••	•••	•••	•••	•••	23		
Screv	v Dislo	cations	•••		•••		•••	•••	25		
Role	of Scr	ew Dis	location	ns in C	rystal (Growth	: Grov	vth			
Sp	irals	•••	•••	•••	•••	•••	•••	•••	28		
4 Moder	N OPT	ICAL T	ECHNIQ	UES					31		
Diffie	culties o	of Obse	rvation						31		
Expe	rimenta	al Tech	niques	•••	•••	•••	•••	•••	32		
The	Silverin	ıg Tech	nique			•••	•••	•••	32		
Diele	ctric M	Iultilay	er Film	S	•••	•••	•••	•••	35		
Tech	niques	of Obs	ervatior	ı	•••	•••	•••	•••	37		
Desc	ription	of Phas	se-contr	ast app	aratus	•••	•••	•••	43		
Visib	oility		•••	•••	•••	•••	•••	•••	45		
Phot	ographi	ic Proc	essing	•••	•••	•••	•••	•••	47		
5 Experi	MENTA	l Obse	RVATIC	NS	•••	•••		•••	48		
Grov	vth Pyr	amids :	and Vie	cinal Fa	aces	•••	•••	•••	48		
Grov	vth by l	layers	•••	•••				•••	49		
Diffu	ision Ex	cperime	ents	•••		•••	•••	•••	50		
Rece	nt Obs	ervatio	ns of G	rowth S	opirals	•••	•••	•••	52		

CONTENTS

					5				PAGE
6	DETAILED ST	UDY OF	GROV	лтн I	PATTERN	s: Mi	CROSCO	\mathbf{PIC}	
	OBSERVAT	ΓIONS	. <i>.</i> .						59
	Introduction	n and C	lassifica	ation o	f Spiral	s		•••	59
	Elementary Spirals								
	Spirals Originating from Dislocations of Multiple Strength								86
	Interlaced S	pirals			••••	•••	•••	•••	96
7	X-RAY STRU	CTURE (OF CRY	STALS	AND TI	HE RE	LATION	то	
•	THE GRO	WTH PA	TTERNS	: Som	e Typic	AL EX	AMPLES		100
	Formation	of Silico	n Carb	ide Cr	vstals				100
	Different types of Silicon Carbide Crystals and Polytypism								101
	Explanation of Growth Patterns								108
	Growth Patterns on Cadmium Iodide								112
	Crystal Str	ucture a	and Gi	rowth	Pattern	s of L	ong-ch	ain	
	organic N	Aolecule	s			•••		• • •	113
8	MEASUREMENT	r of	Step	HEIG	ант: 1	NTERF	EROMET	RIC	
	Techniqu	UTS AND	Resul	.T S		•••		•••	116
	General					•••			116
	The Optin	num C	onditio	ns fo	r multi	iple-bea	am int	er-	
	ferometry	·		•••				•••	117
	Use of Fize	au fringe	ès	•••		•••	•••	•••	122
	Use of Frin	ges of eq	jual Ch	romat	ic Orde	r		• • •	130
	Internal Interference Fringes								132
	Visibility of	f Step lir	ies and	Use o	of Multi	layer F	ilms	•••	135
	Thin Film [Fechniq	ue	•••	•••	•••		•••	137
	Light Profil	e Micro	scopy	•••	•••	•••	•••	•••	138
	Results of N	Aeasurei	ments c	of Step	Height	s	•••	•••	140
	Elementary Growth Spirals with Unit Burgers Vector								140
	Growth S	pirals	Origin	ating	from	Disloc	ations	of	
	Multiple	Strength	1	•••		•••	•••	•••	144
	Interlaced S	Spirals		•••	•••	•••	•••	•••	146
9	Polytypism,	Origin	AND	Move	MENT C	OF DIS	LOCATIC	NS,	
	and Som	e Rela	ted To	OPICS		•••		•••	147
	Explanation	n of Poly	ytypism	i in Te	rms of l	Disloca	tions	•••	147
	Origin of D	vislocatic	ns	•••		•••		•••	148
	Movement	of Dislo	cations			•••	•••	•••	150
	Oriented O	vergrow	ths			•••		•••	158
	Etch Pheno	mena		•••		•••		•••	163
	Holes in Crystals and Hollow Dislocations								
	Conclusion	: Preser	nt Posi	tion c	of Expe	riment	al Obs	er-	
	vations	•••	•••	•••	•••	•••		•••	170
R	EFERENCES	•••				••••		•••	173
Su	BJECT INDEX								179