JAEA R&D Review 2019-20

About This Publication and the JAEA Organization

Research and Development on the H 1 Restoration and Decommissioning

Providing Advanced Scientific Knowledge by Concentration

- Estimate the State of the RPV and PCV after a Severe -Upgrading of the Comprehensive Identification of Comprehensition of Comprehensive Identification of Comprehensive Identifi
- 2. Numerical Evaluation of Fuel Debris Hardness
- First-Principle Calculation of the Mechanical Proper
 3. Degradation Mechanism of a BWR Control Blade
- Understanding the Behavior of Boron Compounds du
- Uncertainty Estimation in the Criticality of Nuclear Sy

 Development of a Criticality Calculation Method for
- Measuring Alpha-Particle Emitters Flying in Nuclear F – A Highly Reliable Alpha Dust Monitor Using a GPS
- Determination of the Optimum Shape of Hydrogen Rea – Hydrogen Elimination Effect Experimentally Verified
- Estimating Radioactive Waste Inventory
 Sorption Behavior of Actinides on Zeolite –
- Towards Routine Analysis of Difficult-to-Measure Rad – Preparation of Analysis Manuals for ⁹³Zr, ⁹³Mo, ¹⁰⁷Pd
- Assessing the Safety of Reusing Contaminated Rubble

 Restricted Reuse in the TEPCO's Fukushima Daiichi
- 10. Development of Robot Simulator for Decommissionin - Multi-Copter Simulator and Virtual Operator Proficie
- Observed Decrease of Radiocesium in River Water --- Result of Three-Year-Long Observation --
- 12. Radiocesium Behavior from Forest to Stream Water an - Understanding How Dissolved Radiocesium is Disch
- 13. Clarifying the Distribution of Sediment-Associated Radiocesium
 Visualizing the Vertical Distribution of Sediment-Associated Radiocesium
- 14. Exploring the Migration of Radionuclides to the Deep
 Elucidation of Subduction from the Vertical Distribution
- Quickly and Accurately Measuring Environmental Rad – Advanced Conversion Method for Airborne Radiatio
- Evaluating the Effective Dose Based on a Detailed Rad
 Providing Protection from Radiation in the Specified
- 17. Modeling the Distribution of Air Dose Rates in Habited
 - Developing the 3D Air Dose Rate Evaluation System

nal Outline	8
Post-Accident Environmental of Fukushima Daiichi NPS	
ting Expertise	11
Accident	12
ties of Fuel Debris –	13
uring a Severe Accident –	14
vstems Containing Fuel Debris	15
Facility Buildings	16
combination Catalysts	17
u loi run-size Equipilient –	18
lionuclides I, and ¹²⁶ Sn Waste –	19
: NDC Site	20
ng Task Training ency Training System –	21
	22
nd River	23
at the Bottom of a Pond without Sediment Sampling	24
Ocean-	25
diation Levels	26
on Monitoring – diation Map	27
d Areas of Fukushima Prefecture	28

2 Nuclear Safety Research

Imp	elementing Continuous Improvements in Safety	29
1.	Uncertainty Reduction in Source Term Evaluation	30
	- Dependence of Decontamination Factor on Aerosol Particle Number Concentration in Pool Scrubbing -	
2.	Toward a More Reliable Safety Evaluation for Loss-of-Coolant Accidents	31
	- Uncertainty Quantification of Fracture Limit of Fuel Cladding Tube -	
3.	Safety Evaluation Considering Uncertainties of Accident Progression	32
	- Development of Simulation-Based Risk Assessment Methodologies -	
4.	Evaluating of Sheltering Effectiveness against Internal Exposure at a Nuclear Accident	33
	- Factors Affecting Sheltering Effectiveness and Influence of Environmental Factors on Indoor/Outdoor Ratio -	
5.	Detailed Investigation of the Fracture Toughness of a Reactor Pressure Vessel	34
	- Fracture Toughness Evaluation of Heat-Affected Zone under Overlay Cladding Using Miniature Specimen -	
6.	More Rational Inspection of the Piping System	35
	- Evaluating the Ratio of Welds to be Inspected Based on a Risk Informed In-Service Inspection -	

3 Advanced Scientific Research

Adv	anced Science Pioneers the Future	36
1.	Unveiling the Unique Fission Process of Fermium Nuclides	37
	- Clues towards Understanding the Existing Limit of Super-Heavy Elements -	
2.	How Removal of Strontium from Seawater ?	<u>38</u>
	- Use of Coprecipitation Method by Barite Controlled Chemical Composition -	
3.	Observation of a New Double Lambda Hypernucleus during a J-PARC Experiment	39
	- As a Microscopic Image, the Second Case Where the Nuclide is Identified -	
4.	Superconductivity Driven by Ferromagnetic Fluctuations in the Uranium Compound UGe2	40
	- Correlation between Superconductivity and Ferromagnetic Fluctuations Studied by Magnetic Measurements at High Pressure -	-

4 Nuclear Science and Engineering Research

Fun	damental Technologies for Nuclear Energy Innovation	41
1.	Contribution by Nuclear Physics to Transmutation Study	42
	- Accurate Prediction of Deuteron Transmutation -	
2.	Microscopic Corrosion Behavior in High-Temperature, High-Pressure Environments	43
	- In-Situ Measurement of Electrical Conductivity of Solution in Stainless Steel Crevices -	
3.	Origin of Am/Cm Selectivity Elucidated by Chemical Bonding	44
	- Focusing on the Covalent Interaction between Metal Ions and Separation Ligands -	
4.	Accurate Detection of Particles in Accelerators, Space, and Medicine	45
	- Understanding the Mechanism that Determines the Scintillation Light Yields -	
5.	Evaluation of Exposure Doses Considering Variations in Physiques of Japanese	46
	- Completion of Adult Japanese Human Model Series -	

- Estimation of Fission Product in a Light Water Reactor
 Development of Fission Product Chemistry Database
- Improving the Prediction Accuracy of Spallation Prod – Improving a Stochastic Model of Nuclear Fission In

5 Applied Neutron and Synchrotron-Radiation Research and Development

Contributions to Developments in Science, Technology, and Academic Research Using Neutron and Synchrotron Radiation

- Long-Term, Stable Production of a High-Intensity and – Development of an RF-Driven Negative Hydrogen I
- Linking Spin-Fluctuations to Electron Correlations
 A Combined Neutron and ARPES Study –
- Two-Dimensional Neutron Measurement with High S
 Development of a Bump Cathode Neutron Detection
- 4. Measuring the Neutron Brightness Distribution from D - Measuring and Validating the Neutron Brightness Distribution from Liquid
- Capturing of a Unique Spin Texture of a 4f Electron
 Discovery of a Magnetic Skyrmion Lattice in the 4f
- Towards Higher-Performance Steels
 Elucidating the Microstructural Formation Mechanic
- 7. Successful Observation of the Melting and Solidification Phenomer
- Contributing to the Advancement of Laser Welding
 8. Compound Developed to Recognize Slight Size Difference
- Towards Efficient Recycling of Lanthanides -

6 HTGR Hydrogen and Heat Application Research

Research and Development on HTGR, Hydrogen Product

- Proposal of Innovative Nuclear Fuel Cycle Based on Hi – Reduction of Cooling Time of Potential Toxicity of
- 2. Towards Implementation of Improved HTGRs ------- Conceptual Design of an Experimental HTGR for St
- Improving the Fuel Safety of High Temperature Gas-Coo – Fabrication of Oxidation-Resistant Fuel Elements for
- 4. Toward Load-Following, Demand-Dependent Operation Confirming the Thermal Load Fluctuation Absorption
- Improving Hydrogen Production Efficiency Using Inn

 High-Efficiency Process Design of the Thermochem
- Reliability Improvements of Corrosion-Resistant Equipm

 Refined Quality Management of Glass-Lined Steel M
- Membrane Makes IS Process Chemical Reaction Effic – Use of an Ion-Exchange Membrane to Reduce Water

JAEA R&D Review 2019-20

or under a Severe Accident	47
ECUME -	
luct Yields	48
nduced by a High-Energy Particle –	

and Academic Research	
	49
d High-Quality Beam	50
Ion Source –	51
ensitivity and High Precision	52
Liquid Hydrogen Moderators	53
	- 54
Electron Magnet EuPtS1 –	55
sm via Electron and Neutron Beams – ena of Metal with a Time Resolution of One Millisecond	56
Technology – rences of Rare-Earth Elements	57

ion, and Heat Application Technologies	58
igh Temperature Gas-Cooled Reactor	59
Radioactive Waste –	
	60
team Supply Based on an HTTR –	
oled Reactors during Severe Oxidation Accident	61
or Oxygen Ingress Accidents –	
on of an HTGR	62
on Characteristics of an HTTR –	
ovative Technologies	63
ical IS Process –	
ent for Hydrogen Production by the IS Process	64
Material –	
ciently	65
Permeation by Cross-Linking -	

JAEA R&D Review 2019-20

7 Research and Development of Fast Reactors

End	ndeavors in Research and Development of Fast Reactor Cycle for Nuclear Innovation 66	
1.	Examining the Behavior of Core Elements during a Strong Earthquake	67
	- Development of 3-Dimensional Reactor Core Group Vibration Analytical Model -	
2.	Clarifying the Discharge Behavior of Molten Core Materials	68
	- Simulated Experiments Using a Shallow Water Pool for Molten Core Discharge -	
3.	Uncertainty Analyses of MA Sample Irradiation Test Data	69
	- For Better Utilization of the Rare Data -	
4.	Development of a Long Life Fast Reactor Control Rod	70
	- Irradiation Behavior of a Sodium-Bonded Absorber Pin -	
5.	Advancing Microwave Heating Denitration Technology	71
	- Development of Particle Control Technology to Improve Powder Characteristics -	

8 Research and Development on Fuel Reprocessing, **b** Decommissioning, and Radioactive Waste Management

Tow	ard Decommissioning of Nuclear Facilities and Radioactive Waste Management	72
1.	Simplification of the Analysis of Uranyl Ions in Radioactive Wastes	74
	- Development of an Analytical Method with Capillary Electrophoresis Using Novel Fluorescent Reagents -	
2.	Reducing the Generation of Uranium Waste	75
	- Decontaminating Metal Using Acidic Electrolytic Water -	
3.	Ensuring the Stability of Trench-Type Radioactive Waste Disposal Facilities	76
	- Examination of Waste Acceptance Criteria of Sand Filling to Reduce Voids in Waste Packages -	
4.	Improvement of Matching Method for Seepage Flow Analysis	77
	- Application of Inversion for Seepage Flow Analysis in Multi-Layered Earthen Cover -	
5.	Evaluating the Uncertainty of the Redox Potential in Groundwater	78
	- An Application Example Based on Monitoring Data of Water Quality in the Horonobe Area -	
6.	Estimating the Hydraulic Conductivity around a Gallery before Excavation	7 9
	- An Estimation Method Applying the Mean Stress Index -	
7.	Dating Calcium Carbonate Using a Micro-Scale Analytical Method	80
	- A Method for Tracing Prior Underground Water Environments -	
8.	Chemical Analysis and Identification of Many Mineral Grains	81
	- New Technique to Elucidate the Mountain Uplifting Process -	
9.	Unified Management of Repository Design Information	82
	- Development of a Design Support System for Geological Disposal Projects -	
10.	Realistic Modeling of Tracer Migration in Rock Fracture	83
	- Effects of Fine-Scale Surface Alterations on the Tracer Retention in Fractured Crystalline Rock -	
11.	Stabilization of Low-Level Radioactive Waste Solutions	84
	- Cement Solidification of Low-Level Radioactive Waste Solutions Containing Carbonates -	
12.	Investigation of Fuel-Cladding Materials for the Reprocessing of Spent Nuclear Fuel	85
	- Evaluation of the Nitric Acid Resistance of New Materials Preventing Severe-Accident Progression -	
13.	Predicting the Flow and Mixing Behavior in an Extractor	86
	- Simulating Fluidity, Dispersion, and Mass Transfer in a Centrifugal Contactor -	

9 Computational Science and E-Systems Research

Computational Science for Nuclear Research and Devel

- 1. Acceleration of Plume Dispersion Model------
- Reduced-Communication Algorithm for GPU-Base
- Matrix Solvers for Multiphase CFD Simulations with

 Communication Avoiding Multigrid Methods
- Prediction of Laser Irradiation Condition in Laser Pro

 Provision of Laser Irradiation Condition for Melting and Solidifier
- Modeling the Effects of Hydrogen on Metallic Materi – Spontaneous Separation of Aluminum Grain Bound
- AI-Assisted Acceleration of Quantum Simulations --- Analysis of Strongly Correlated Electron Systems w

10 Development of Science & Technology for Nuclear Nonproliferation

Development of Technology and Human-Capacity Build and Nuclear-Security Fields to Support the Peaceful Use

Nondestructive Assay of Nuclear Materials Using y-ra

 Development of Simulation Code for y-ray Elastic S

Research Field Index

JAEA R&D Review 2019-20

opment	87
	88
d Supercomputers –	
One Hundred Billion Grids	89
ocessing	9 0
cation Processing Using Computational Science Code SPLICE	-
als	9 1
aries by Hydrogen –	
·	92
vith Sparse Modeling –	

ing in the Nuclear-Nonproliferation	
of Nuclear Energy	93
ays Scattering –	94

		95
--	--	----