JAEA R&D Review 2018-19

About This Publication and the Outline of the Or

Research and Development Related to the Accident at the 1 TEPCO's Fukushima Daiichi NPS

Providing Advanced Scientific Knowledge to Promote Environmental Restoration and Decommissioning by Concentrating Expertise

- How is Debris Distributed?
 Evaluation of the Detailed Debris Distribution and
- Two Types of Insoluble Cesium Particles Emitted at
 Investigation of the Generation Process of Mainly 3
- Chemical Reaction between Stainless Steel and Cesi

 Estimation of the Cesium Distribution within the T
- Zirconium Hinders the Oxidative Dissolution of Nuc – Effect of Zirconium Incorporation in Uranium Oxi
- Characterization of Waste Generated by Contaminate – Analysis of Carbonate Slurry –
- 6. Safe Long-Term Storage of Secondary Wastes after I – Evolution of Radiolysis Studies to Support Practica
- Understanding the Radioactive-Contamination Situation In

 Development of 3D-Visualization Technology for I
- Development of a Robot Simulator for Nuclear Deco

 Operator-Proficiency Training and Performance Ex
- Detection of Radionuclide Depth in Soil by Aerial R

 Technology for Estimating the Vertical Distribution of R
- 11. Highly Accurate Measurement of Radiation-Dose Di
- Realization of Highly Accurate Radiological Airbo
- Prediction of Radiocesium Behavior in Upstream Car – Sediment and Radiocesium-Transport Simulation during
- 14. Research on the Distribution of ¹³⁷Cs in Seabed Sedin
 Relationship between the ¹³⁷Cs Inventory and Seaf
- Prediction of the Dispersion of Radionuclides Releas

 Dispersion Simulation of Radionuclides from Coast
- 16. Determining the Conditions for Effective Forest Dec
 Simulation of the Effect of Reducing Air-Dose Rat
- 17. Nanoscale Visualization of Cesium Adsorption to Cla
 Chemical Mapping Using Synchrotron-Radiation-H
- Strongest Cesium-Adsorption Site on Clay Minerals-– Numerical Simulations of Cesium Adsorption on M

ganization	of JAEA	8
0		

······································	10
·	11
Re-Criticality by Large-Scale Simulation -	
the Early Stages of the Accident	12
Silicate Particles –	13
'EPCO's Fukushima Daiichi NPS –	15
lear Fuel	14
de upon Inhibiting Oxidative Dissolution -	
ed Water Treatment	15
Decontamination of Radioactive Water	16
al Issues in the Decommissioning of 1F –	
nside the TEPCO's Fukushima Daiichi NPS Building	17
Radioactive Substances –	10
Using High-Power Lasers –	10
ommissioning	19
valuation of the Robot by Simulation –	
adiation Monitoring	20
adionuclides in Soil Based on the γ -ray Spectrum –	21
rne Monitoring on Rugged Terrain –	21
	22
esidential Areas –	
tchment	23
Approximately Five Years Following the IF Accident –	24
loor Topography –	21
sed into the Ocean	25
stal Regions to the Open Sea –	
ontamination	26
av Minerals	27
Photoemission Electron Microscopy –	_,
	28
Aicroscopic Surface Structures –	20
nmental Recovery in rukusnima	29

2 Nuclear Safety Research

Imp	Dementing Continuous Improvements in Safety	30
1.	Prediction of the Cooling Capability of a Superheated Reactor Core	31
	- Experiments for Modeling Post-Boiling Transition Heat Transfer -	
2.	Evaluation of Fuel Integrity during Loss-of-Coolant Accidents	32
	- Influence of Air Fraction in Steam during High-Temperature Oxidation of Fuel Cladding -	
3.	Evaluation of the Environmental Release of Radionuclide Material in a SA	33
	- Accident Analysis Considering Oxidation of BWR Control Material -	
4.	Evaluating Radiation Exposure Difference Inside and Outside a Vehicle	34
	- Development of a Vehicle Model for Radiation Transport Simulation and Its Application -	
5.	Evaluation of Confinement Performance at a Reprocessing Plant during Severe Accidents	35
	- Experiment to Clarify the Migration/Deposition Behavior of Volatile Radioactive Ruthenium -	
6.	Deducing the Origin of Nuclear Materials by Analyzing Uranium Particles in Environmental Samples	36
	- Determination of Chemical Forms and Isotope Ratios in Individual Uranium Particles for Nuclear Safeguards -	

3 Advanced Scientific Research

Aav	Advanced Science Pioneers the Future 37	
1.	Capturing Various Nuclear Splits in Fission	38
	- Toward the Reduction of Radiotoxicity of Nuclear Waste -	
2.	Protection from Metal Toxicity by a Protein?	39
	- Binding of Heavy Elements to Soluble Glycoprotein on the Paramecium Cell Surface -	
3.	Seeing Hypernuclei by γ rays	40
	- Can Hidden "Strangeness" in Neutron Stars Be Disclosed? -	
4.	Unraveling the Mechanism of Strong Superconductivity in a Uranium Compound Exposed to a Magnetic Field	41
	- New Electronic State Revealed by High-Resolution Nuclear Magnetic Resonance Measurements at Cryogenic Temperatures -	
5.	Safer Memory Storage by "Antimagnets"	42
	- A New Way of Controlling Antiferromagnetic Magnetization -	
6.	Spin Current Power Generation	43
	- Magnon Density of States in Y ₃ Fe ₅ O ₁₂ Determined via Neutron Scattering -	

4 Nuclear Science and Engineering Research

Fun	undamental Technologies for Innovation in Nuclear Energy 4	
1.	Accuracy Improvement of Nuclear Data on Minor Actinides	45
	- Evaluation of the Thermal-Neutron-Capture Cross Section Using Resonance Structure -	
2.	Self-Healing of Ceramics in a Radiation Environment	46
	- Result of Using a New Method for Observing Ceramic Surfaces -	
3.	Computational Design of High-Toughness Alloys	47
	- Magnesium-Alloy Design from Electronic-Structure Calculations -	

- 4. Toward Elucidation of Solvent Extraction Mechanis – Observation of Metal Ions at an Interface Using a
- 5. Elucidation of the Genetic-Transformation Process I – Role of Extremely Low-Energy Electrons below 1
- 6. Theoretical Estimation of the Therapeutic Effect of 1
 Development of a Mathematical Model Useful for 1
- Radioactive-Material Behavior during a Severe Acci – Evaluation of the Release and Transport of Radioa
- Improving the Reliability of Nuclear-Characteristics

 Critical Experiment to Validate Nuclear-Data for Lea
- A New Technique for Extracting Low-Power Proton

 Establishment of the Elemental Technology Requirement
- 10. Plant-Safety-Measurement Enhancement-----
- A Study of Sheath Materials for Use on MI Cables

5 Applied Neutron and Synchrotron-Radiation Research and Development

Contributions to Developments in Science, Technology Using Neutron and Synchrotron Radiation

- 1. High-Intensity Proton Acceleration Using a Broadba – Investigation of Beam Instability Caused by Highe
- Elucidation of the Strengthening Mechanism of High
 Dislocation Evaluation during Deformation of Lath
- Supplying Pulsed Neutron Beams with Narrow Widt
 Development of a Low-Activation Thermal-Neuro
- Establishment of a Novel Analysis Technique for Hi
 Application of an Accelerator-Driven Compact Ne
- Characterization of Spin Arrangement by Neutron Transmission For Observation under Extreme Environments and
- Clarifying the Chemical State of Platinum-Group El – Advanced Analysis of Correlations between Const
- 7. Change of the Oxidation State of Fuel Cell Catalysts
- Surface Structure of Metal Nanoparticles Revealed

6 HTGR Hydrogen and Heat Application Research

Research and Development of HTGR, Hydrogen Producti

- Exploring High Temperature Gas-Cooled Reactor Sa

 Accident Progression Analysis of HTGR during Ex
- Environmental Burden Reduction by High Temperatu
 Study on Reducing Radioactive Waste by Utilizing

JAEA R&D Review 2018-19

m	48
Laser –	
by Radiation	49
eV –	
Boron Neutron Capture Therapy	50
Drug-Discovery Research and Treatment Planning –	
ident	51
ctive Materials in a Reactor –	
Prediction for Accelerator-Driven Systems	52
d-Coolant on a Critical Assembly in the United States	
Beams with a Laser	53
red for the TEF –	
	54
during Severe Accidents –	

, and Academic Research	
	55
nd RF Cavity	56
er Harmonics –	
h-Strength Steels by Pulsed-Neutron Analysis	57
h Martensitic Steel –	
th and Short Decay	58
n Absorber for Neutron-Beam-Pulse Shaping –	
gh-Performance-Steel Development	59
utron Source in the Manufacturing Industry –	
ransmission	60
Mapping of Spin Arrangements –	
ements in Borosilicate Glass	61
ituent Elements Using Imaging XAFS –	
during Reactions	62
l by Synchrotron X-ray Absorption Spectroscopy -	

ion, and Heat Application Technologies	63
ifety	64
xtreme Seismic Events –	
ure Gas-Cooled Reactor	65
the Characteristics of HTGR –	

3.	Enhancing the Safety of Plutonium Burner High Temperature Gas-Cooled Reactor	66
	- Test of ZrC Coating as an Oxygen Getter -	
4.	Development of a Passive Radiation Cooling System for High Temperature Gas-Cooled Reactors	67
	- Conceptual Development of a Decay Heat Removal Method during Accidents -	
5.	Improvement of Neutron-Startup-Source Exchange Work of the High Temperature Gas-Cooled Reactor	68
	- Downsizing of Transportation Container Adjusting with Exchange Processes -	
6.	Toward Efficient Hydrogen Production via the IS Process	69

- Promotion of HI Decomposition by a Membrane Reactor -

7. Applicability Evaluation of Metallic Materials in Hydrogen Production by the IS Process------ 70

- Corrosion Resistance of Nickel-Based Alloy in a Practical Gaseous HI Decomposition Environment -

7 Research and Development of Fast Reactors

Res	Research and Development of Fast Reactor Cycle Technology 7	
1.	Safety-Design Guidelines for Generation-IV Sodium-Cooled Fast Reactors	72
	– To Achieve Its Adoption into Leading-Edge Fast Reactors –	
2.	Evaluate the Mechanical Properties of MOX	73
	- Young's Modulus Analyzed by the Sound Speeds of MOX Measured by the Ultrasound Method -	
3.	Evaluation on Cesium Behavior in a Fast-Reactor Fuel Element	74
	- Development of an Analytical Method for Fast-Reactor MOX-Fuel Elements -	
4.	Evaluation of the Irradiation Behavior of Fast-Reactor MOX Fuel	75
	- O/M-Ratio Dependence of Fuel Restructuring and Fuel Temperature -	
5.	Determining Inspections Necessary for Maintaining Fast Reactor Performance	76
	- Development and Standardization of a Determination Method for In-Service Inspection of Fast Reactors -	
6.	Advanced Inspection Technology for JSFR SG Tubes	77
	- Development of a Hybrid Eddy Current Sensor for Small Defects -	
7.	Evaluation of Chemical Reaction Behavior during Severe Accidents in Fast Reactors	78
	- Chemical Reaction Dynamics between Concretes and Sodium -	

8 Research and Development on Fuel Reprocessing, **8** Decommissioning, and Radioactive Waste Management

oward the Decommissioning of Nuclear Facilities and Radioactive Waste Management 79	
Integrated Evaluation of Radioactivity in Waste from Multiple Facilities	81
- Study of a Common Evaluation Method for Radioactivity in Research Reactor Waste -	
Ultratrace Analysis of Rare Earth Elements in Groundwater	82
- Improvement of the Onsite Extraction Method for the Study of Underground Redox Conditions -	
What Will Happen to Groundwater When Closing the Underground Drift?	<i>83</i>
- World's First On-Site Observation of Groundwater Chemistry in a Closure Drift -	
Development of a Method to Infer Fault Connectivity	84
- A New Ductility Index Including the Mechanical Properties of Rocks -	
Accumulation of Heavy Metals in Biofilms in a Deep Subsurface Environment	85
- Evaluation of Heavy Metal Sorption in Groundwater Interaction Systems of Microbes, Rocks, and Groundwater -	
	 ard the Decommissioning of Nuclear Facilities and Radioactive Waste Management Integrated Evaluation of Radioactivity in Waste from Multiple Facilities Study of a Common Evaluation Method for Radioactivity in Research Reactor Waste – Ultratrace Analysis of Rare Earth Elements in Groundwater Improvement of the Onsite Extraction Method for the Study of Underground Redox Conditions – What Will Happen to Groundwater When Closing the Underground Drift? World's First On-Site Observation of Groundwater Chemistry in a Closure Drift – Development of a Method to Infer Fault Connectivity A New Ductility Index Including the Mechanical Properties of Rocks – Accumulation of Heavy Metals in Biofilms in a Deep Subsurface Environment Evaluation of Heavy Metal Sorption in Groundwater Interaction Systems of Microbes, Rocks, and Groundwater –

- Characterization of Mass Transport Paths in Mudston

 Establishing an In Situ Tracer Test Method for Gro
- Efficient Analysis of Rock Mineral Content Ratio

 Modal Analysis Using X-ray Maps and Image Pro
- Transport of Radionuclides in Specific Surface Envir – Application of an Open Data Method to Assess Se
- 9. Vitrification Technology for Radioactive Elements
 Search for an Appropriate Glass Medium –

9 Computational Science and E-Systems Research

Computational Science for Nuclear Research and Deve

- Challenges of Solid-State Physics with AI Technolog

 Machine Learning Accelerates Quantum Simulation
- Elucidation of Embrittlement of Steels from Analyst
 Evaluation of the Diffusion Coefficient by Kinetic Monte
- Proposing a New Standard for Radiation Damage to

 Establishing a Radiation-Damage-Evaluation Form
- 4. Development of Visualization Technology for Large - In-Situ Visualization Using Particle-Based Volume

10 Development of Science & Technology for Nuclear Nonproliferation

Development of Technology and Human-Capacity E and Nuclear-Security Fields to Support the Peacefu

Development of a New Method for Age Determination
 Reduction of Analytical Time Using the Secular Equilibrium State in a Sample

ne with a Fracture	86
	87
cessing –	00
diment Transport –	88
	89
ronments	88 89

elopment	90
gy	91
ons –	
s of Atomic-Diffusion Behavior	<i>92</i>
Carlo Simulation Based on First-Principles Calculation -	
Nuclear Materials	93
nula Based on Numerical Simulations –	
-Scale Simulation at Runtime	94
e Rendering –	

Building in the Nuclear-Nonproliferation	
l Use of Nuclear Energy	95
ion-	96