Key Data for Ionizing-Radiation Dosimetry: Measurement Standards and Applications

Pre	face	1		
Abstract				
1	Introduction	5		
	1.1 The Need for Recommendations on Key Data	5		
	1.2 Reasons for Reevaluating Koy Data	5		
	1.2 Relation to Farlian ICRU Reports	0		
	1.0 Instantion to Earlier 1010 Reports	0		
	1.4 Organization of Report.	7		
2	Definitions of Basic Quantities and Terms	9		
	2.1 Fluence	ğ		
	2.2 Mass Attenuation Coefficient	ŏ		
	2.3 Mass Energy-Transfer Coefficient	9		
	24 Mass Energy Absorption Coefficient	9		
	2.4 Mass Energy-Absorption Coefficient	9		
	2.5 Mass Stopping Fower	9		
	2.0 Linear Energy Iransier	10		
	2.7 Cema	10		
	2.8 Radiation Chemical Yield	11		
	2.9 Mean Energy Expended in a Gas per Ion Pair Formed	11		
	2.10 Kerma	11		
	2.11 Exposure	12		
	2.12 Absorbed Dose	12		
3	Realization of Quantities by Primary Standards Laboratories	15		
	3.1 Air-Kerma Standards	15		
	3.1.1 Free-Air Ionization Chambers	15		
	312 Covity Ionization Chambers	10		
	3.9 Absorbed Dess Standards	10		
	2.2 Absorbeu-Dose Standards	17		
	3.2.1 Cavity-Ionization Chamber	17		
		18		
	3.2.3 Calorimetry	19		
	3.3 Summary	20		
4	Charged-Particle Stonning Powers and Related Quantities	91		
-	41 Electronic Stopping Power	21 91		
	4.1.1 Floatrong and Desitrong	41 60		
	4.1.9 Hoomy Changed Dentiolog	44		
	4.1.2 meany Unarged Particles	23		
		24		
	4.2 Mean Excitation Energy.	24		
	4.3 Density-Effect Correction	25		

	4.4	Mass Rediative Stopping Power of Electrons and Positrons	27
	4.4	4 A 1 Bremsstrahlung in the Field of the Atomic Nucleus	27
		4.4.1.1 Incident Electrons	27
		4.4.1.2 Incident Positrons	28
		442 Bremsstrahlung in the Field of the Atomic Electrons	28
		443 Rediative Stopping Power for Compounds and Mixtures	29
	4.5	Ranges and Radiation Yields.	29
	1.0		
5	Reco	mmended Values for Key Data	31
	5.1	Mean Excitation Energy of Dry Air	31
	5.2	Mean Excitation Energy of Graphite	33
	5.3	Mean Excitation Energy of Liquid Water	34
	5.4	Average Energy to Create an Ion Pair in Dry Air	37
		5.4.1 W_{air} for Electrons	37
		5.4.2 Effective W_{air} for Use with Monoenergetic Photon Beams	40
		5.4.3 $W_{air} s_{g,air}$ for ⁶⁰ Co γ rays	41
		5.4.4 W _{air} for Protons and Heavy Ions	41
	5.5	Initial-Ionization Correction for Air-Filled Ionization Chambers	41
	5.6	Humidity Correction for Air-Filled Ionization Chambers	43
	5.7	Heat Defect	44
	0	5.7.1 Heat Defect of Graphite	45
		572 Heat Defect of Water	45
	5.8	Radiation Chemical Yield for Fricke Dosimetry	47
6	Phot	ton Interaction Coefficients	49
	6.1.	Photoelectric Absorption	49
	6.2	Coherent (Rayleigh) Scattering	51
	6.3	Incoherent (Compton) Scattering.	54
	6.4	Electron-Positron Pair Production	57
	6.5	Mass Attenuation Coefficients.	57
	6.6	Mass Energy-Transfer and Energy-Absorption Coefficients	66
	6.7	Uncertainties of Photon-Interaction Coefficients	67
	Tanama	act of Pasamman dations	71
•	- mpa - 7 1	Import on Measurement Standards	79
	7.1	Impact on Measurement Standards	74
	1.4	Impact on Fractical Dosimetry	14
Ap	pendi	x. Stopping Power and Range Tables for Charged Particles	79
	A.1	Electrons and Positrons	79
	A.2	Protons and Alpha Particles	79
	A.3	Carbon Ions	80
n . (e		00
ne	ierene	Jes	ฮฮ