Table of Contents

WELCOME ADDRESS	Ι
OPENING AND INTRODUCTION · · · · · · I	Ί
EXECUTIVE SUMMARY	V
SUMMARY OF THE WORKSHOP VI Agenda Participants List	Ί
PLENARY TALK	
(1) Overview of PFM/PFC Research in US, W. B. Gauster(SNLA) ····	1
(2) Layered and Doped Materials for Plasma Facing Components, H. Conrads (KFA Jülich)	9
TOPICS PRESENTATION AND DISCUSSION	
TOPICS 1: How to bridge Present Large Machines' Experiences to the Design Activities of the Next Step Devices?	
(3) How to Gap the Experience Gained in Today's Large Fusion Devices to the Next Step Devices?, R. Behrisch (MPI) 9	1
(4) Results of JET and Implications for Next Step Devices, K. J. Dietz (JET) · · · · · · · · · · · · · · · · · · ·	3
(5) Experiences with Graphite Divertor Plate in JT-60 Lower X-Point Operation, T. Ando (JAERI) · · · · · · · · · · · · · · · · · · ·	9
(6) Comment from TFTR, M. Ulrickson (SNLA) ····· 14	7
TOPICS 2: Problem Area of PFC Aspects	
(7) Overview: Heat Removal Limitations of Present PFC Design and Possibilities for Improvement, R. D. Watson & R. E. Nygren (SNLA)	9
(8) Comment on Heat Exhaust of PFC, M. Seki (JAERI) · · · · · · · 17	7
(9) Gaseous Divertor Experiment by PISCES-A, L. Schmitz(UCLA) · · 18	7
(10) Comment, H. Nariai (Tsukuba Univ.) · · · · · · · 19	7
TOPICS 3: Impact of Neutron Effects to PFM and PFC Feasibilities for ITER	
(11) Overview: Neutron Effects and Materials Selection for the Next Step Plasma Facing Components, T. Burchell (ORNL) · · · 20	3

(12)	Change of Thermal Properties of Graphite by Neutron Irradiations, T. Maruyama (PNC)	221
(13)	 Key Properties for PFC Materials How to Correlate the Change of Micro Structure with Material Properties?, T. Oku (Ibaraki Univ.) · · · · · · · · · · · · · · · · · · ·	237
(14)	How to Establish the Data Base without 14MeV INS?, T. Tanabe (Osaka Univ.)	249
TOPI	CS 4: Trapping and Detrapping of Implanted Hydrogen Isotopes	
(15)	Overview: Trapping and Detrapping of Implanted Hydrogen Isotopes, K. L. Wilson (SNLL)	161
(16)	Thermal Desorption Spectra of Hydrogen and Hydrocarbons from Graphite Implanted with Hydrogen, M. Yamawaki(Univ. Tokyo) $\cdot \cdot$	
(17)	Compensation Effects on the Diffusion Constants of Hydrogen in Materials, K. Watanabe & K. Ashida (Toyama Univ.)	303
(18)	Diffusion Constants of Hydrogen Isotopes in Graphite and Compensation Effect, K. Ashida & K. Watanabe (Toyama Univ.)	309
(19)	Ion-Induced and Thermal Release of Hydrogen Isotopes from Graphite, K. Morita (Nagoya Univ.)	333
(20)	Hydrogen Tapping and Re-Emission for Graphite, A. A. Haasz (Univ. of Toronto)	355
(21)	Hydrogen Solubility in Neutron Irradiated Graphite, H. Atsumi (Kinki Univ.)	361
(22)	Hydrogen Behavior in Mo and W, $$ T. Tanabe (Osaka Univ.) $$ · · · ·	367
TOPIO	CS 5: Erosion of Plasma Facing Materials under Off-Normal Operating Conditions	
(23)	Overview: Simulation of Disruptions in Different HHF Test Facilities, J. Linke (KFA Jülich)	379
(24)	Evaluation Process of the Thermal Erosion during Disruptions for ITER, H. Bolt (Univ. Tokyo)	401
(25)	Erosion of Plasma Facing Materials under Off-Normal Conditions, J. G. van der Laan (NET)	421
(26)	Efforts towards Runaway Electron Damage Data Base Establishment, H. Bolt (Univ. Tokyo)	441
TOPIO	CS 6: Erosion of Plasma Facing Materials under Normal	

Operating Conditions

(27)	A. A. Haasz (Univ. of Toronto)	459
(28)	Evaluation of Bulk-boronized Graphites as Plasma-Facing Materials for ITER, Y. Hirooka (UCLA)	495
	Erosion/Redeposion in the DIII-D Divertor, K. L. Wilson (SNLL)	
(30)	Data from MPI Garching, R. Behrisch (MPI-Garching) · · · · · · · ·	535
TOPI	CS 7: Present Status of Material Data Base	
(31)	Overview on Existing Datasets for Plasma Facing Materials, H. Bolt (Univ. Tokyo) ····································	553
(32)	PSI Data obtained by Surface and Vacuum Science Laboratory, Hokkaido University, T. Hino (Hokkaido Univ.)	569
TOPI	CS 8: Possibilities of Medium- and High-Z Plasma Facing Materials for Future Large Machines	
(33)	Overview: Possible Plasma Scenario Compatible with High Z Plasma Facing Material, K. Itoh (NIFS)	58
(34)	Operation Experiences of Ultra Long Pulse TRIAM Mo-Limiter Discharge, N. Yoshida (Kyushu Univ.)	66
(35)	Comment from JT-60(II) Material Aspect and Helium Recycling, H. Nakamura (JAERI)	70