TABLE OF CONTENTS

ABSTRACT

- Ι. INTRODUCTION
- II. DESCRIPTION OF THE EXPERIMENT
- EXPERIMENTAL PROCEDURES III.
 - III.1. Rf and RG discharges in hydrogen
 - III.1.a. The rf discharge
 - III.1.b. The RG discharge
 - i) Initation and quenching pressu
 - ii) Influence of the rf power leve
 - iii) Influence of the pressure
 - iV) Comparison of RG and simple gl of admixed inert gases
 - III.1.c. Cleaning of the ports and side
 - III.2. Temperature of the Quadrupole By connection tube
 - III.2.a. Effect of the hydrogen pressu
 - III.2.b. Temperature of the connection
 - III.3. Beginning and end of a cleaning
 - III.4. Temperature of the portholes an
 - III.5. Reoxidation and outgasing proces
 - III.6. Measurement of parametric depen
- IV. FLUXES TO THE WALLS
 - IV.1. Hydrogen flux; Langmuir effect
 - IV.2. Destruction of the reaction prod plasma of the discharge
 - IV.3. Thermal reoxidation of the wall
- ۷. FIRST CLEANING OF THE SURFACES
 - V.1. Time history of the apparatus
 - V.2. Arc spots
 - V.3. Impurity release from fresh surfaces

	PAGE
	1
	2
	5
	12
n at low pressures	12
	12
	14
ures	14
el	17
	17
low discharges and effect	20
le-arms	20
v-Pass and of the	
	20
re in the QBP	23
tube	23
j run	27
nd side-arms	30
edures	31
ndences	32
	33
	33
lucts by the	
lucts by the	38
by H ₂ 0 vapour	40
	42
	42
	43
	44

VI.	SURFACE DEOXIDATION BY RF AND RG DISCHARGES IN HYDROGEN	49
	<pre>VI.1. Description of a typical experiment</pre>	49 49
	 b) Discussion of the mass spectra - identification of the gaseous products c) Evolution of P₁₈ and P₂₈ 	49 51
	VI.2. Comparison with other cleaning runs; initial clean-down time τ_{cd}	53
	VI.3. Variation with the wall temperature T_{W}	55
	VI.3. Effect of the current $I_{egin{smallmatrix} GD \end{smallmatrix}}$ of the glow discharge	55
	VI.5. Influence of the hydrogen pressure in the RG discharge on the partial pressure of water	58
	VI.6. Influence of the pump speed Sp	60
	VI.6.a. Experiments using the throttle valve TV 1	60
	VI.6.b. Influence of the cryopump CF	63
	VI.7. Admixed noble gases	67
	VI.8. Admixed methane	67
	VI.9. An optimized cleaning run	71
VII.	DISCUSSION OF THE RESULTS	72
	VII.1. Sputtering, arcs and carbon removal	72
	VII.2 Water release	76
	VII.2.a. General remarks	76
	VII.2.b. A simplified model for the deoxidation reaction in the RG discharge	77
	VII.3. Discussion of the parametric variation of the cleaning rate v _p	80
	a) Variation as a function of the filling pressure P ₂ of hydrogen b) Variation as a function of the current density j _{GD}	80 80
	c) Variation as a function of the pump speed (using the throttle valve TV 1)	81
	d) Variation produced by the cryopump CF	81
	e) Variation as a function of the wall temperature ${\sf T}_{\sf W}$	82
	VII.4. Water release at lower wall temperatures and in the QBP	85
VIII.	CONCLUSIONS	86
	Acknowledgements References	88 89

IG	JRE	CAPTIONS

Fig	1.	Experimental apparatus
Fig	2.	Residual gas spectrum in the QBP
Fig.	3.	Pump speeds for gases of different mas
Fig	4.	Pump speed for H ₂ as a function of pre A: TV1 open B: TV1 clos
Fig	5a.	Lowest pressures at which hydrogen pla sustained respectively, using rf power
Fig	5b.	Floating potential and flux density of as a function of the rf - power; (radi
Fig	6a.	Minimum pressure to initiate the RG di of the initially applied dc voltage fo rf power
Fig	6b.	Minimum pressure at which an RG plasma function of the initially applied volt of the rf power
Fig	7.	Lowest pressures at which a plasma can in a simple glow discharge and in an R rf power
Fig	8.	Voltage current characteristics and fl $P_2 = 4 \times 10^{-3}$ for two values of the rf
Fig	9.	Voltage - current characteristics and RG-discharges at W_{rf} = 32 Watt and var
Fig	10.	Voltage - current - characteristics ar RG discharge and of a pure glow discha
Fig	11.	Voltage - characteristics and floating with various H ₂ -Ne mixtures
Fig	12.	Evolution of the partial pressures of direct admission of pure H_2 in the RGA
Fig	13.	Evolution of the partial pressures of direct admission of pure H_2 in the RGA
Fig	14.	Variation of the H ₂ O signal in the RGA vapour at constant inlet pressure. QBF
Fig	15.	Variation of the characteristic time facross the connection tube as a function

6 8 sses at 200 ^OC 9 essure 10 sed asmas can be ignited and 13 only hydrogen into the wall 13 iofrequency discharge) ischarge in H₂ as a function or different values of the 15 can be sustained, as a tage for different values 15 n be initiated and sustained RG discharge with 32 W of 16 loating potential at 18 ² power floating potential for rious H₂ pressures 19 nd floating potential of 21 arge (at higher pressures) g potential for RG discharges 22 methane, water and CO after $A, T_{W} = 35 ^{O}C$ 24 methane, water and CO after A, $T_{W} = 160 ^{\circ}C$ 25 A after introduction of H₂O P and CT at room temperature 26 $oldsymbol{ au}_{\mathsf{CT}}$ for water vapour transfer ion of its temperature T_{CT} 28

Fig 1 6.	Variation of the water signal U ₁₈ in the RGA after a rapid variation of P ₁₈ in the GDV (at t=0). $T_{OBP} = 160$ ^O C, $T_{CT} = 180$ ^O C	29
Fig 17.	Illustrating the procedure used to measure the variation of $\mathrm{P}_{18}^{}$ as function of a parameter X	32
Fig 18.	Observed decrease of the H ₂ pressure in the GDV at the start of the RG discharge: "Langmuir effect"	35
Fig 19.	Flux density $lpha arphi_i$ of atomic hydrogen penetrating into the wall as a function of the RG - current	37
Fig 20.	Rates at which $ ext{CH}_4$ is destroyed by the rf and RG discharges	39
Fig 21.	Rate at which NH $_{ m 3}$ is destroyed by the rf and RG discharges	39
Fig 22.	First clean-down of the GDV: decrease of H_2^{0} and CO partial pressures	45
Fig 23.	Impurity release at the end of the first clean-down of the GDV by a RG discharge	46
Fig 24.	Release of impurity gases in an RG discharge after the introduction of a new element into the GDV	48
Fig 25.	Evolution of the residual gas spectra during the successive phases of an experiment	50
Fig 26.	$\rm H_2O$ and CO release from a freshly oxidized SS surface in a RG discharge	52
Fig 27.	Final clean down phase of the vessel at T $_{ m W}$ = 200 $^{ m O}$ C	54
Fig 28.	Variation of the partial pressure ${ t P}_{18}$ of water in the RG discharge as a function of the wall temperature ${ t T}_{ extbf{W}}$	56
Fig 29.	Variation of the partial pressure of water ${\tt P}_{18}$ as a function of the glow discharge current	57
Fig 30.	Variation of the partial pressure of water P $_{18}$ in the GDV and of the pump speed Sp with the hydrogen pressure P $_2$ in the RG discharge	59
Fig 31.	"Gedankenexperiment" illustrating measurements with the throttle valve TV1	60
Fig 32.	Expected variations of the hydrogen concentrations n $_2$ in B and $ u_2$ in M	61
Fig 33.	Expected variation of the water concentration ${m v}_{18}^{}$ in M and of the total concentration n $pprox$ n $_2$ in B	62
Fig 34.	Influence of the roughing speed on the elimination rate of water	64
Fig 35.	Effect of the LN ₂ cryopump on the elimination rate of water	65

PAGE

· r

- Fig 36. Effect of the LN_2 cryopump on the elimit the end of the cleaning run illustrated
- Fig 37. Cracking of CH_4 in a RG discharge and c CO with walls at room temperature 1 % C
- Fig 38. Cracking of CH₄ in a RG discharge and c CO with oxidized walls at room temperat
- Fig 39. The beginning of an "optimized" cleaning
- Fig 40. Variation of $n_{18}^{}$ as a function of $I_{GD}^{}$: a) without LN $_2$ in the cryopump, b) with LN $_2$ in the cryopump CF

PAGE

ination rate of water at	
d on fig. 26.	66
corresponding appearance of	
CH ₄ + 99 % H ₂	68
corresponding appearance of	
ture: 2,5 % CH ₄ + 97,5 % H ₂	69
ng run	73
h LN ₂ in the cryopump CF	83