Contents

	Preface	xiii
	Acknowledgments	xix
1	Introduction	1
1.1	Problems with rule based approaches	2
1.2	The structure and design of neural networks	4
	1.2.1 A simple neural network for template matching	4
	1.2.2 Definition of neural networks	11
	1.2.3 Design philosophy	17
1.3	Properties that networks should achieve	20
1.4	Overview of the book	35
2	Highlights of Adaptive Resonance Theory	39
2.1	Spatial mechanisms	40
	2.1.1 Short term memory equations	40
	2.1.2 Unbiased pattern storage in STM	43
	2.1.3 Outstar learning	53
	2.1.4 Instar learning	56
	2.1.5 Creating a field of instars	59
	2.1.6 Stabilizing instar learning by using feedback	64
	2.1.7 Generalizations	68
	2.1.8 Proof of convergence	69
2.2	Using spatial mechanisms to code temporal patterns	70
	2.2.1 Storing sequences with decreasing activation	70
	2.2.2 The LTM invariance principle	73
	2.2.3 Using rehearsal to delete classified items	77
	2.2.4 Guidelines for performing context sensitive recog- nition	79
	2.2.5 Masking fields	79 83
	2.2.6 Computer simulations of the masking field	85
2.3	Extensions to masking fields	93
	0	

3	Classifying Spatial Patterns	99
3.1	Practical reasons for achieving several properties	103
	3.1.1 The formation of stable category codes	104
	3.1.2 Real-time operation	107
	3.1.3 Learning and classifying embedded patterns	108
3.2	Normalizing the output of $F^{(1)}$	111
	3.2.1 Normalizing by length	111
	3.2.2 Normalizing at each $F^{(2)}$ cell	113
3.3	The structure of the $F^{(2)}$ cell assembly	115
3.4	STM activation equations after learning	118
3.5	Overview of learning	124
	3.5.1 Learning isolated and embedded patterns	124
	3.5.2 Forming stable category codes	126
3.6	The excitatory LTM learning equation	130
3.7	Analysis of the excitatory LTM learning equation	132
	3.7.1 Simplifications made in the analysis	133
	3.7.2 Competition between weights at the same cell	135
	3.7.3 Competition between weights at different cells	138
	3.7.4 Analyzing different choices for m and n	139
3.8	Determining which inputs are in an $F^{(2)}$ cell's	
	classified pattern	142
3.9	General approach to learning inhibitory connections	145
3.10	Multiplexing two values on each output signal	147
3.11	Regulating inhibitory learning to allow the network	
	to form stable category codes	150
	Freezing inhibitory weights to prevent oscillation	153
3.13	Learning cell sizes	154
3.14	Modifications to improve learning	155
	3.14.1 Restricting weight decay	155
	3.14.2 Limiting inhibition to uncommitted cells	157
	3.14.3 Resetting uncommitted cells with low activity	159
	3.14.4 Using r_{ji} to modulate the learning rate	162

3.15	Simulations	166
3.16	Properties not achieved by SONNET 1	177
	3.16.1 Combining inhibitory signals multiplicatively	180
	3.16.2 Using a separate vigilance for each link	181
	3.16.3 Improving the calculation for I_i^{\times}	183
4	Classifying Temporal Patterns	187
4.1	Constraints on the LTM invariance principle	191
4.2	Implementing the LTM invariance principle with an	
4.0	on-center off-surround circuit	194
4.3	Modifying the feedback weights	198
4.4	Resetting classified portions of the input pattern	201
4.5	Resetting $F^{(1)}$ cells when the field saturates	204
4.6	Simulations	209
5	Multilayer Networks and the Use of At-	
	tention	217
5.1	Combining previous circuits to create homologous	
5.2	fields Using feedback to prevent categories from forming at	219
0.2	inappropriate times	222
5.3	Using attention to allow the network to be event	222
	driven	223
5.4	Classifying items presented at different rhythms	227
5.5	Representing different dimensions of input patterns	
5.6	in different fields	232
	Eliminating the lockstep operation of the network	235
5.7	Adding an attentional reset mechanism to SONNET	237
5.8	Modifying the network for recurrent operation	238
6	Representing Synonyms	241
6.1	Using multiple representations for each item	242
6.2	Forcing multiple nodes to learn each pattern	245
6.3	Current networks do not represent synonyms well	248

Contents

Contents

6.4	The use of presynaptic inhibition allows synonyms to	050
	be properly handled	252
6.5	Summary of the first segment in the chapter and a	255
	preview of the second segment	$\frac{255}{256}$
6.6	Learning presynaptic inhibition	
6.7	Single trial learning of synonymous representations	257
6.8	Manner by which synonyms become associated	265
6.9	Multiple links from each $F^{(1)}$ node to each $F^{(2)}$ node	267
6.10	Summary of the second segment in the chapter and	
	a preview of the third segment	272
6.11	Presynaptic inhibition for intercell competition	274
6.12	Inhibitory weights in the presynaptic connections	279
6.13	Presynaptic inhibition in the feedback links	280
6.14	Summary of the third segment in the chapter and a	
	preview of the chapter's final sections	284
6.15	Distortion insensitive recognition	284
6.16	Classification of spatial patterns	287
6.17	Creating distributed representations	289
	6.17.1 Hardware needed for local representations	291
	6.17.2 Reducing hardware requirements	292
	6.17.3 STM binding of distributed classifications	295
	6.17.4 LTM binding of distributed classifications	300
	6.17.5 Learning distributed representations	304
6.18	Reducing the number of connections required	306
	6.18.1 Reducing wasted lateral connections	307
	6.18.2 Transmitting information via shared links	311
7	Specific Architectures That Use Presynap-	
4	tic Inhibition	317
7.1	First step in implementing SONNET 2	317
	7.1.1 Minimal SONNET 2 architecture	318
	7.1.2 The operation of the network after learning	322
	7.1.3 New formulation for the function I_i^{\times}	326

•	
7.1.4 Using the network to achieve learning	329

Translation and size invariant recognition	334
7.2.1 Architecture to center objects	336
7.2.2 Extensions for multiple input dimensions and	
multiple feature types	343
7.2.3 Achieving size invariant recognition	348
7.2.4 Extensions to allow the centering of objects surrounded by extraneous information7.2.5 Extensions to allow the simultaneous classifica-	
Conclusion	361
Feedforward Circuits for Normalization and Noise Suppression	375
Network Equations Used in the Simula- tions of Chapter 3	381
Network Equations Used in the Simula- tions of Chapter 4	387
Glossary	395
Bibliography	399
Index	407
	 7.2.1 Architecture to center objects 7.2.2 Extensions for multiple input dimensions and multiple feature types 7.2.3 Achieving size invariant recognition 7.2.4 Extensions to allow the centering of objects surrounded by extraneous information 7.2.5 Extensions to allow the simultaneous classification of multiple objects Conclusion Feedforward Circuits for Normalization and Noise Suppression Network Equations Used in the Simulations of Chapter 3 Network Equations Used in the Simulations of Chapter 4 Glossary Bibliography