Contents

Foreword	vii
Quantum Gravity	xxxi
Lecture 1	1
1.1 A Field Approach to Gravitation	1
1.2 The Characteristics of Gravitational Phenomena	3
1.3 Quantum Effects in Gravitation	10
1.4 On the Philosophical Problems in Quantizing	
Macroscopic Objects	11
1.5 Gravitation as a Consequence of Other Fields	15
Lecture 2	17
2.1 Postulates of Statistical Mechanics	17
2.2 Difficulties of Speculative Theories	22
2.3 The Exchange of One Neutrino	23
2.4 The Exchange of Two Neutrinos	25
Lecture 3	29
3.1 The Spin of the Graviton	29
3.2 Amplitudes and Polarizations in Electrodynamics.	
Our Typical Field Theory	31
3.3 Amplitudes for Exchange of a Graviton	35
3.4 Physical Interpretation of the Terms in the Amplitudes	38
3.5 The Lagrangian for the Gravitational Field	42
3.6 The Equations for the Gravitational Field	43
3.7 Definition of Symbols	44

Contents

Lecture 4	47
 4.1 The Connection Between the Tensor Rank and the Sign of a Field 4.2 The Stress-Energy Tensor for Scalar Matter 4.3 Amplitudes for Scattering (Scalar Theory) 4.4 Detailed Properties of Plane Waves. Compton Effect 4.5 Nonlinear Diagrams for Gravitons 4.6 The Classical Equations of Motion of a Gravitating Particle 4.7 Orbital Motion of a Particle About a Star 	47 49 50 52 54 56 59
Lecture 5	63
 5.1 Planetary Orbits and the Precession of Mercury 5.2 Time Dilation in a Gravitational Field 5.3 Cosmological Effects of the Time Dilation. Mach's Principle 5.4 Mach's Principle in Quantum Mechanics 5.5 The Self Energy of the Gravitational Field 	63 66 69 71 74
Lecture 6	77
 6.1 The Bilinear Terms of the Stress-Energy Tensor 6.2 Formulation of a Theory Correct to All Orders 6.3 The Construction of Invariants with Respect to Infinitesimal Transformations 6.4 The Lagrangian of the Theory Correct to All Orders 6.5 The Einstein Equation for the Stress-Energy Tensor 	77 81 82 85 87
Lecture 7	89
 7.1 The Principle of Equivalence 7.2 Some Consequences of the Principle of Equivalence 7.3 Maximum Clock Rates in Gravity Fields 7.4 The Proper Time in General Coordinates 7.5 The Geometrical Interpretation of the Metric Tensor 7.6 Curvatures in Two and Four Dimensions 7.7 The Number of Quantities Invariant under General Transformations 	89 93 95 97 99 101
Lecture 8	107
8.1 Transformations of Tensor Components in Nonorthogonal Coordinates 8.2 The Equations to Determine Invariants of $g_{\mu\nu}$	107 110

iv

8.3 On the Assumption that Space Is Truly Flat 8.4 On the Relations Between Different Approaches	112
to Gravity Theory	113
8.5 The Curvatures as Referred to Tangent Spaces	115
8.6 The Curvatures Referred to Arbitrary Coordinates	118
8.7 Properties of the Grand Curvature Tensor	120
Lecture 9	123
9.1 Modifications of Electrodynamics Required by	
the Principle of Equivalence	123
9.2 Covariant Derivatives of Tensors	124
9.3 Parallel Displacement of a Vector	127
9.4 The Connection Between Curvatures and Matter	132
	105
Lecture 10	135
10.1 The Field Equations of Gravity	135
10.2 The Action for Classical Particles in a Gravitational	
Field	140
10.3 The Action for Matter Fields in a Gravitational	
Field	143
Lecture 11	151
11.1 The Curvature in the Vicinity of a Spherical Star	151
11.2 On the Connection Between Matter and the Curvatures	153
11.3 The Schwarzschild Metric, the Field Outside	
a Spherical Star	154
11.4 The Schwarzschild Singularity	156
11.5 Speculations on the Wormhole Concept	150

11.5 Speculations on the Wormhole Concept15911.6 Problems for Theoretical Investigations of the Wormholes161

Lecture 12	163
12.1 Problems of Cosmology	163
12.2 Assumptions Leading to Cosmological Models	166
12.3 The Interpretation of the Cosmological Metric	169
12.4 The Measurements of Cosmological Distances	171
12.5 On the Characteristics of a Bounded or Open Universe	173

Contents

Lecture 13	177
13.1 On the Role of the Density of the Universe	
in Cosmology	177
13.2 On the Possibility of a Nonuniform and	
Nonspherical Universe	180
13.3 Disappearing Galaxies and Energy Conservation	181
13.4 Mach's Principle and Boundary Conditions	184
13.5 Mysteries in the Heavens	186
Lecture 14	189
14.1 The Problem of Superstars in General Relativity	189
14.2 The Significance of Solutions and their Parameters	192
14.3 Some Numerical Results	194
14.4 Projects and Conjectures for Future Investigations	
of Superstars	196
Lecture 15	199
15.1 The Physical Topology of the Schwarzschild Solutions	199
15.2 Particle Orbits in a Schwarzschild Field	201
15.3 On the Future of Geometrodynamics	202
Lecture 16	207
16.1 (T) · C · · · · · · · · · · · · · · · · ·	0.07
16.1 The Coupling Between Matter Fields and Gravity 16.2 Completion of the Theory: A Simple Example	207
of Gravitational Radiation	211
16.3 Radiation of Gravitons with Particle Decays	212
16.4 Radiation of Gravitons with Particle Scattering	215
16.5 The Sources of Classical Gravitational Waves	218
Bibliography	221
Index	229