Contents

List of Figures						
List of Tables						
Notation x						
1 Introduction	1					
1.1 Adaptive Control using Neural Networks - Why and Why Now?	1					
1.2 Historical Perspective	2					
1.3 Objective and Contributions of this Monograph	8					
1.4 Outline of this Monograph	9					
2 Network Structures and Learning Algorithms						
2.1 Introduction	11					
2.2 Basic Units	13					
2.2.1 Activation function	14					
2.3 Network Topology	15					
2.3.1 Feedforward neural network	16					
2.3.2 Recurrent neural network	17					
2.3.3 Single layer and multilayer neural networks	. 18					
2.4 Supervised Learning	. 20					
2.4.1 Early learning algorithms	. 20					
2.4.2 First order gradient methods	. 22					
2.4.3 Second order gradient methods	. 29					
2.4.4 LRLS and IGLS algorithms	. 33					
2.4.5 Chemotaxis algorithm	. 33					

		2.4.6 History-stack learning	33
		2.4.7 Alopex algorithm	34
	2.5	Reinforcement Learning	35
		2.5.1 Linear reward-penalty learning	3 6
		2.5.2 Associative search learning	36
		2.5.3 Adaptive critic learning	37
	2.6	Unsupervised Learning	87
		2.6.1 Hebbian learning	37
		2.6.2 Boltzmann machines learning	3 9
		2.6.3 Kohonen self-organising learning	39
	2.7	Conclusions	10
3	Neu	ral Networks Control Strategies 4	3
	3.1	Introduction	13
	3.2	Twofold Classifications	16
	3.3	Non-hybrid Strategy - Control Signal	19
		3.3.1 Mimic human expert	19
		3.3.2 Mimic conventional controller	19
		3.3.3 Indirect learning architecture	51
	3.4	Non-hybrid Strategy - Desired Output Signal	52
		3.4.1 Direct inverse control 5	52
		3.4.2 Forward modelling and inverse control	54
		3.4.3 Neural internal model control	58
		3.4.4 Neural feedback linearisation	59
		3.4.5 Neural predictive control	52
	3.5	Hybrid Strategy - Control Signal	63
		3.5.1 Indirect learning architecture	53
	3.6	Hybrid Strategy - Desired Output Signal	64
		3.6.1 Direct inverse control	64
		3.6.2 Forward modelling and inverse control	67
		3.6.3 Neural feedback linearisation	<u> </u>
	3.7	Hybrid Strategy - Feedback Controller Output Signal	70
		3.7.1 Feedback error learning	70
	3.8	Applications	72
	3.9	Conclusions	76
4	On-	line BPM and LRLS Control Algorithms 7	9
	4.1	Introduction	79
	4.2	On-line Adaptive Control using MLP Trained by BPM Algorithm	31

		4.2.1	Plant Jacobian	82			
			Summary of the on-line BPM control algorithm	85			
			Simulation results	86			
	4.3			89			
	4.5	4.3 On-line Adaptive Control using LRLS Algorithm					
			Comparison of BPM, DBD, MABP, LM and LRLS algorithms	89 94			
	4.4		ne Application on Coupled Tanks Test Rig	97			
	1.1		SISO coupled tanks apparatus	97			
			Real-time results for the SISO coupled tanks	100			
	4.5		sions	100			
	1.0	Concius					
5	Loca	al Conv	rergence and Stability Analysis	103			
	5.1		ction	103			
	5.2	Analysi	s of the On-line BPM Control Algorithm	105			
		5.2.1	Convergence of the model	106			
		5.2.2	Convergence of the NN controller	111			
	5.3	Analysi	s of the On-line LRLS Control Algorithm	113			
	5.4		and BPM Algorithms	119			
	5.5	Simulat	ion Results	121			
	5.6	Conclus	sions	124			
6	6 On-line IGLS Control Algorithm						
	6.1	Introdu	ction	127			
	6.2	The Ne	w Learning Algorithm	127			
		6.2.1	Summary of the IGLS control algorithm	129			
		6.2.2	Reasons for using an integrated gradient and least squares algorithm	130			
	6.3	3 Convergence and Stability Conditions					
	6.4	6.4 Simulation Results		132			
	6.5	5 Application to Multivariable Coupled Tanks Test Rig					
		6.5.1	Multivariable coupled tanks apparatus	135			
		6.5.2	Real-time control results	136			
	6.6	Conclus	sions	137			
7	Sys	tems wi	ith Unknown and Varying Time-delays	139			
	7.1		iction	139			
	7.2						
			Self-tuning pole assignment controller	140			
			PID controller	141			
7.3 Simulation Results				142			

		7.3.1	Performance of the controllers	143					
		7.3.2	Effect of different numbers of hidden units	143					
		7.3.3	MIMO system with varying time-delays	144					
	7.4 Comparison of Controllers in Real-time Experiments								
		7.4.1	Heat transfer process trainer	146					
		7.4.2	Experimental procedures and results	147					
	7.5	Discus	sion and Analysis of the Controllers	152					
	7.6	Conclu	isions	158					
8	Con		159						
	8.1	Summ	ary	159					
	8.2	Direct	ions for Future Research	161					
Appendi				163					
	A.1	What	does Approximation Theory Say?	163					
	A.2	Proof	of Theorem 6.1	165					
R	References								
In	Index								