I. BASIC CONCEPTS	1
1. Introduction	1
2. Basic concepts	1
3. The analysis in terms of normal modes	3
4. Non-dimensional numbers	6
BIBLIOGRAPHICAL NOTES	7
II. THE THERMAL INSTABILITY OF A LAYER OF	
FLUID HEATED FROM BELOW	9
l. THE BÉNARD PROBLEM	
5. Introduction	9
6. The nature of the physical problem	9
7. The basic hydrodynamic equations	10
(a) The equation of continuity	10
(b) The equations of motion	11
(c) The rate of viscous dissipation	13
(d) The equation of heat conduction	14
8. The Boussinesq approximation	16
9. The perturbation equations	18
(a) The boundary conditions	21
10. The analysis into normal modes	22
(a) The solutions for the horizontal components of the velocity	24
11. The principle of the exchange of stabilities	24
12. The equations governing the marginal state and the reduction to	
a characteristic value problem	26
13. The variational principles	27
(a) The first variational principle	27
(b) The second variational principle	31
14. The thermodynamic significance of the variational principle	32
15. Exact solutions of the characteristic value problem	34
(a) The solution for two free boundaries	35
(b) The solution for two rigid boundaries	3 6
(i) The even solutions	37
(ii) The odd solutions	39
(c) The solution for one rigid and one free boundary	42
(d) Summary of the results for the three cases	43
16. The cell patterns	43
(a) Rolls	44
(b) Rectangular and square cells	44

(c) Hexagonal cells	47
(d) Triangular cells	50
(e) More general cell patterns	51
17. The variational solution	53
18. Experiments on the onset of thermal instability in fluids	59
(a) Bénard's experiments	60
(b) The Schmidt-Milverton principle for detecting the onset of	
thermal instability	61
(c) The precision experiments of Silveston	64
(d) Observations by optical methods	69
BIBLIOGRAPHICAL NOTES	71
III. THE THERMAL INSTABILITY OF A LAYER OF	
FLUID HEATED FROM BELOW	76
2. THE EFFECT OF ROTATION	
19. Introduction	76
20. The theorems of Helmholtz and Kelvin	76
21. The equations of hydrodynamics in a rotating frame of reference	80
22. The Taylor–Proudman theorem	83
23. The propagation of waves in a rotating fluid	85
24. The problem of thermal instability in a rotating fluid: general	~
considerations	87
25. The perturbation equations	87
(a) The analysis into normal modes	89
26. The case when instability sets in as stationary convection. A varia-	~ ~
tional principle	89
(a) A variational principle	91
27. Solutions for the case when instability sets in as stationary con-	04
vection	04
(a) The solution for two free boundaries	07
(b) The solution for two rigid boundaries	101
(c) The solution for one right and one free boundary (b) The solution of the $M^{\frac{3}{2}}$ has	101
(a) The origin of the 13-law	104
28. The motions in the horizontal planes and the cen patterns at the	106
(a) Bolls restangles and squares	108
(b) Heregons	111
(c) The limiting behaviour of the streamlines for $T \rightarrow \infty$	113
20 On the onset of convection as overstability. The solution for the	
case of two free boundaries	114
(a) The nature of the roots of the characteristic equation (215)	121
30. On a method of discriminating the character of the marginal state.	
A general variational principle	123
(a) The variational principle	124
(

31. The onset of convection as overstability: the solution for other	
boundary conditions	126
32. The case $\mathfrak{p} = 0$	129
33. Thermodynamic significance of the variational principles	130
(a) The case when the marginal state is stationary	131
(b) The case when the marginal state is oscillatory	132
34. The case when Ω and g act in different directions	134
35. Experiments on the onset of thermal instability in rotating fluids	135
(a) Experiments with water	136
(b) Experiments with mercury	138
BIBLIOGRAPHICAL NOTES	143
IV. THE THERMAL INSTABILITY OF A LAYER OF	
FLUID HEATED FROM BELOW	146
3. THE EFFECT OF A MAGNETIC FIELD	
36. Hydromagnetics	146
37. The basic equations of hydromagnetics	146
38. The equation of motion governing the magnetic field and some of	
its consequences	148
(a) The decay of a magnetic field in the absence of fluid motions.	
The Joule dissipation	149
(b) The case when there are motions and the conductivity is infinite	151
(1) Conservation theorems	152
(ii) The transformation of magnetic energy into kinetic energy and conversely	153
(c) The general energy equation	154
39. The Alfvén waves	155
(a) The case when $\nu = \eta = 0$	156
(b) The effects of finite viscosity and resistivity	157
40. Some special solutions of the hydromagnetic equations. The	157
(a) The equipartition solution	157
(b) Force free fields	150
(a) The analogue of the Taylor Broudman theorem	150
(c) The analogue of the Taylor-Froudman theorem	100
41. The problem of thermal instability in the presence of a magnetic field: general considerations	159
42. The perturbation equations	160
(a) The boundary conditions	162
(b) The analysis into normal modes	163
(c) The solutions for the horizontal components of the velocity and	
the magnetic field	164
43. The case when instability sets in as stationary convection. A varia-	
tional principle	165
(a) A variational principle	166
(b) The thermodynamic significance of the variational principle	167

xi

44. Solutions for the case when instability sets in as stationary convection	169
(a) The solution for two free boundaries	170
(b) The solution for two rigid boundaries	172
(c) The solution for one rigid and one free boundary	175
(d) Cell patterns	176
45. The origin of the $\pi^2 Q$ -law and an invariant	177
(a) An invariant	180
46. On the onset of convection as overstability	181
47. The case when \mathbf{H} and \mathbf{g} act in different directions	186
48. Experiments on the inhibition of thermal convection by a magnetic field	190
BIBLIOGRAPHICAL NOTES	193
V. THE THERMAL INSTABILITY OF A LAYER OF	100
FLUID HEATED FROM BELOW	190
4. THE EFFECT OF ROTATION AND MAGNETIC FIELD	
49. The like and the contrary effects of rotation and magnetic field on	106
50. The propagation of hydromagnetic wayes in a rotating fluid	107
51. The propagation of hydromagnetic waves in a rotating nutu	198
59. The case when instability sets in as stationary convection	201
(a) The solution for the case of two free boundaries	202
53 The case when instability sets in as overstability	209
(a) An approximate solution applicable to liquid metals	210
(b) Numerical results for mercury	211
54 Experiments on the onset of thermal instability in the presence of	
rotation and magnetic field	212
(a) The results on the critical Rayleigh number and on the manner of the onset of instability	213
(b) Optical observations and the discontinuous variation of the cell	
dimensions with the strength of the magnetic field	217
BIBLIOGRAPHICAL NOTES	219
VI. THE ONSET OF THERMAL INSTABILITY IN FLUID	
SPHERES AND SPHERICAL SHELLS	220
55. Introduction	220
56. The perturbation equations	220
(a) The operator L^2	222
(b) The analysis into normal modes	223
(c) Boundary conditions	224
(d) The velocity field	225
57. The validity of the principle of the exchange of stabilities for the	000
case β = constant and γ = constant	226
58. A variational principle for the case when β and γ are constants	229
(a) The thermodynamic significance of the variational principle	230

	59.	On the onset of thermal instability in a fluid sphere	231
		(a) The cell patterns	234
	60.	On the onset of thermal instability in spherical shells	237
		(i) Free surfaces at $r = 1$ and $r = \eta$	241
		(ii) A rigid surface at $r = \eta$, and a free surface at $r = 1$	241
		(iii) A free surface at $r = \eta$, and a rigid surface at $r = 1$	242
		(iv) Rigid surfaces at $r = 1$ and $r = \eta$	243
		(a) The case $b = c = 1$	243
		(b) The case $b(r) = 1$	247
		(c) The case $c(r) = 1$	250
	61.	On the effect of rotation on the onset of thermal instability in a fluid	
		sphere. The formulation of the problem	251
		(a) The representation of an axisymmetric solenoidal vector field	252
		(b) The perturbation equations	254
		(c) The boundary conditions	256
		(d) The variational principle	257
		(e) The thermodynamic significance of the variational principle	259
	62.	The effect of rotation on the onset of stationary convection in a	
		fluid sphere	260
	63.	Some remarks on geophysical applications	266
	BII	BLIOGRAPHICAL NOTES	268
VI	. 1	THE STABILITY OF COUETTE FLOW	272
	64.	Introduction	272
	65.	The physical problem	272
	66.	Rayleigh's criterion	273
	67.	Analytical discussion of the stability of inviscid Couette flow	277
		(a) The equations in terms of the Lagrangian displacement	278
		(b) The case $m = 0$	280
		(c) The case $m \neq 0$	281
	68.	The periods of oscillation of a rotating column of liquid	284
		(a) The case $\Omega = \text{constant}$	284
		(i) The case $\eta = 0$	285
		(ii) The case $m = 0$	287
		(b) The case $\Omega = A + B/r^2$ and $m = 0$	288
		(i) The solution for a narrow gap	288
		(ii) The formal solution for a wide gap	290
	69.	On viscous Couette flow	292
	70.	The perturbation equations	294
		(a) The stability of the flow for $\mu > \eta^2$	296
	71.	The solution for the case of a narrow gap when the marginal state is	
		stationary	298
		(a) The solution of the characteristic value problem for the case	
		$\sigma = 0$	300

xiii

(b) Numerical results	303
(c) An alternative method of solution	307
(d) An approximate solution for $\mu \rightarrow 1$	309
(e) The asymptotic behaviour for $(1-\mu) \rightarrow \infty$	313
72. On the principle of the exchange of stabilities	315
73. The solution for a wide gap when the marginal state is stationary	318
(a) The characteristic equation	319
(b) Numerical results for the case $\eta = \frac{1}{2}$	321
74. Experiments on the stability of viscous flow between rotating	
cylinders	324
(a) The determination of the critical Taylor numbers, for the case	
$\mu = 0$, by torque measurements	327
(i) Results of the experiments with the narrow gap	330
(ii) Results of the experiments with the wide gap $(\eta = \frac{1}{2})$	330
(b) The dependence of the critical Taylor number on Ω_2/Ω_1 . The	
results of visual and photographic observations	333
(i) Observations on the wave numbers of the disturbance	
manifested at marginal stability	335
(ii) Comparison between the measured and the predicted	
(T_c,μ) -relations	337
BIBLIOGRAPHICAL NOTES	339

VIII. THE STABILITY OF MO.)RE GENERAL FLOWS
----------------------------	-------------------

	THE NUMBER OF FOUR COMPANY	
I	BETWEEN COAXIAL CYLINDERS	343
75.	Introduction	343
76.	The stability of viscous flow in a curved channel	343
	(a) The perturbation equations	344
	(b) The solution of the characteristic value problem for the case	
	$\sigma = 0$	345
	(c) Numerical results	34 8
77.	The stability of viscous flow between rotating cylinders when a	
	transverse pressure gradient is present	350
	(a) The perturbation equations for the case $(R_2 - R_1) \ll \frac{1}{2}(R_2 + R_1)$	351
	(b) The solution of the characteristic value problem for the case	
	$\sigma = 0$ and $\mu = 0$	352
	(c) The physical interpretation of the results	353
	(d) Comparison with experimental results	358
78.	The stability of inviscid flow between coaxial cylinders when an axial	
	pressure gradient is present	359
	(a) The case of a pure axial flow	361
	(b) The general case when rotation is also present	366
	(i) A variational principle for c	368
	(ii) A variational principle for λ^2	3 69
	(iii) The criterion for stability	369

CONTENTS

79. The stability of viscous flow between rotating coaxial cylinders	
when an axial pressure gradient is present	371
(a) The perturbation equations	372
(b) The reduction to the case of a narrow gap	373
(c) An approximate solution of the characteristic value problem for the case $\mu > 0$	374
(d) Comparison with experimental results	377
BIBLIOGRAPHICAL NOTES	379
IX. THE STABILITY OF COUETTE FLOW IN	
HYDROMAGNETICS	382
80. The equations of hydromagnetics in cylindrical polar coordinates	382
81. The stability of non-dissipative Couette flow when a magnetic field parallel to the axis is present	384
(a) The case $m = 0$	386
(b) The case $m \neq 0$	389
82. The periods of oscillation of a rotating column of liquid when a	
magnetic field is impressed in the direction of the axis	390
(a) The case $\Omega = \text{constant}$	390
(b) The case $m = 0$ and $\Omega = A + B/r^2$; the stabilizing effect of a	
magnetic field in case of narrow gaps	391
83. The stability of non-dissipative Couette flow when a current flows	
parallel to the axis	393
(a) The case $m = 0$	395
(b) The case $m \neq 0$	396
84. The stability of non-dissipative Couette flow when an axial and a transverse magnetic field are present	396
(a) The case $\Omega = 0$	397
85, The stability of dissipative Couette flow in hydromagnetics. The	
perturbation equations	398
(a) The boundary conditions	400
(b) The equations governing the marginal state when the onset of	
instability is as a stationary secondary flow	401
(c) The reduction to the case of a narrow gap	402
86. The solution of the characteristic value problem for the case	
$\mu > 0$	403
(a) A variational principle	404
(b) The solution of the characteristic value problem. The secular	405
determinant	405
(c) The case of non-conducting walls	408
(d) The case of conducting walls	410
(e) Numerical results	411
(f) The asymptotic behaviour for $Q \to \infty$	413
87. The solution of the characteristic value problem in the general case	415
(a) The case $\mu = -1$	417

xvi

	88.	The stability of dissipative flow in a curved channel in the presence	499
			444
		(a) The equations governing the marginal state when the onset of instability is as a stationary secondary flow	422
		(b) The stability of a pure pressure maintained flow	422
	89.	Experiments on the stability of viscous flow between rotating	
		cylinders when an axial magnetic field is present	425
	BII	BLIOGRAPHICAL NOTES	426
X.	TH	E STABILITY OF SUPERPOSED FLUIDS: THE	
	4	RAYLEIGH-TAYLOR INSTABILITY	428
	90.	Introduction	428
	91.	The character of the equilibrium of a stratified heterogeneous	
		fluid. The perturbation equations	428
		(a) Allowance for surface tension at interfaces between fluids	430
	92.	The inviscid case	433
		(a) The case of two uniform fluids of constant density separated	
		by a horizontal boundary	434
		(b) The case of exponentially varying density	435
	93.	A general variational principle	436
		(a) The variational principle	440
	94.	The case of two uniform viscous fluids separated by a horizontal	
		boundary	441
		(a) The case $\nu_1 = \nu_2$	443
		(b) The modes of maximum instability for the case $\nu_1 = \nu_2$, $\rho_2 > \rho_1$, and $S = 0$	444
		(c) The effect of surface tension on the unstable modes for $v_{1} = v_{2}$	
		and $\rho_2 > \rho_1$	447
		(d) The manner of decay in the case $v_1 = v_2$, $o_2 < o_3$, and $S = 0$	448
		(e) Gravity waves	451
	95.	The effect of rotation	453
		(a) The case of two uniform fluids separated by a horizontal boundary	455
		(b) The case of exponentially varying density	456
	96.	The effect of a vertical magnetic field	457
		(a) Two uniform fluids senarated by a horizontal houndary the	407
		unstable case	459
		(b) Two uniform fluids senarated by a horizontal boundary: the	400
		stable case	463
	97	. The effect of a horizontal magnetic field	464
	98	. The oscillations of a viscous liquid globe	466
		(a) The perturbation equations and their solution	467
		(i) The solution for the inviscid case: the Kelvin modes	468
		(ii) The solution for the general case	469
		(b) The boundary conditions and the characteristic equation	470
		(c) The manner of decay of the Kelvin modes Numerical results	479
			414

CONTENTS

CONTENTS	XVII
99. The oscillations of a viscous liquid drop	475
(a) The solution for the inviscid case	475
(b) The solution for the general case	476
BIBLIOGRAPHICAL NOTES	477
XI. THE STABILITY OF SUPERPOSED FLUIDS: THE	401
KELVIN-HELMHOLTZ INSTABILITY	481
100. The perturbation equations	481
101. The case of two uniform fullds in relative norizontal motion separated by a horizontal boundary	483
(a) The case when surface tension is absent	484
(b) The stabilizing effect of surface tension	485
102 The effect of a continuous variation of U on the development of the	200
Kelvin–Helmholtz instability	487
103. The Kelvin–Helmholtz instability in a fluid in which both ρ and U	
are continuously variable	491
(a) Analytical results for the case $ ho= ho_0e^{-eta z}$ and $U=U_0z/d$	492
104. An example of the instability of a shear layer in an unbounded	
heterogeneous inviscid fluid	494
105. The effect of rotation	498
(a) The case of two uniform fluids in relative horizontal motion	400
(b) The discussion of the characteristic equation	499
(0) The discussion of the characteristic equation	507
(a) The effect of a magnetic field in the direction of streaming	502
(i) The case of two uniform fluids in relative horizontal	000
(i) The case of two uniform findes in feative horizontal motion separated by a horizontal boundary	510
(b) The effect of a magnetic field transverse to the direction of	
streaming	511
BIBLIOGRAPHICAL NOTES	512
XII. THE STABILITY OF JETS AND CYLINDERS	515
107. Introduction	515
108. The gravitational instability of an infinite cylinder	516
(a) The origin of the gravitational instability and an alternative method of determining the characteristic frequencies	520
109. The effect of viscosity on the gravitational instability of an	
infinite cylinder	523
(a) The case when the effects of viscosity are dominant	527
(0) The general case	529
110. The effect of a uniform axial magnetic field on the gravitational instability of an infinite cylinder	531
(a) The nature of the stabilizing effect of the axial magnetic field	534
111. The capillary instability of a liquid jet	537
(a) The origin of the capillary instability	539

xvii

xviii

	(b) The capillary instability of a hollow jet	539
	(c) The effect of viscosity	540
112.	The effect of a uniform axial magnetic field on the capillary in-	
	stability of a liquid jet	542
	(a) The effect of finite electrical conductivity	545
	(b) The case of high resistivity	549
	(c) The general case	551
113.	The stability of the simplest solution of the equations of hydro-	
	magnetics	551
	(a) An example	554
114.	The effect of fluid motions on the stability of helical magnetic fields	556
	(a) The case $f = 0$	560
	(b) The case $f = 1$	562
	(c) The general case	56 3
115.	The stability of the pinch	565
	(a) On stable pinch configurations	569
BII	BLIOGRAPHICAL NOTES	574
****	ODAVIDADIONAL DOULLIDDIUM AND	
AIII.	GRAVITATIONAL EQUILIBRIUM AND	577
116	Introduction	577
117	The visial theorem	577
117.	(a) Some definitions and relations	577
	(a) Some demittions and relations (b) The general form of the visial theorem	570
	(a) The virial theorem for equilibrium configurations	5018
110	(c) The virial theorem for equilibrium conigurations	209 201
110.	(a) A share staristic equation for determining the pariods of equilibrium	909
	(a) A characteristic equation for determining the periods of oscilla-	586
110	The gravitational instability of an infinite homogeneous medium.	000
110.	Jeans's criterion	-588
120.	The effect of a uniform rotation and a uniform magnetic field on	
	Jeans's criterion	589
	(a) The effect of a uniform rotation	589
	(b) The effect of a uniform magnetic field	591
	(c) The effect of the simultaneous presence of rotation and magnetic	
	field	594
BII	BLIOGRAPHICAL NOTES	596
VIV	A GENERAL VARIANTONAL DRINGIDLE	r00
101	Teter duction	288
121.	Introduction	999
122.	A variational principle for treating the stability of hydromagnetic	500
	(a) The effect of viscosity	603
192	Revension of the variational principle to allow for compressibility	605
123.	RELOCDADUICAL NOTES	608
		000

CONTENTS

APPENDIX I. INTEGRAL RELATIONS GOVERNING STEADY		
CONVECTION	609	
124. Introduction	609	
125. The integral relations	609	
(a) The integral relations	611	
126. The amplitude of the steady convection past marginal stability	612	
BIBLIOGRAPHICAL NOTES	615	
APPENDIX II. THE VARIATIONAL FORMULATION OF THE		
PROBLEM CONSIDERED IN CHAPTER V	617	
127. The general equation governing the energy-balance	617	
BIBLIOGRAPHICAI NOTE	621	
APPENDIX III. TOBOIDAL AND POLOIDAL VECTOR FIELDS	622	
128. A general characterization of solenoidal vector fields. The funda-	022	
mental basis	622	
129. The orthogonality properties of the basic toroidal and poloidal		
fields	623	
BIBLIOGRAPHICAL NOTES	626	
APPENDIX IV. VARIATIONAL METHODS BASED ON ADJOINT		
DIFFERENTIAL SYSTEMS	627	
130. Adjointness of differential systems. An example	627	
131. The dual relationship and the variational principle	629	
BIBLIOGRAPHICAL NOTES	633	
APPENDIX V. ORTHOGONAL FUNCTIONS WHICH SATISFY FOUR		
Boundary Conditions	634	
132. Introduction	634	
133. Functions suitable for problems with plane boundaries	634	
(a) Integrals involving $C_n(x)$ and $S_m(x)$	636	
134. Functions suitable for problems with cylindrical and spherical		
boundaries	637	
(a) The normalization integral	638	
(b) The cylinder functions of order 1	640	
(c) The spherical functions of half-odd integral orders	640	
BIBLIOGRAPHICAL NOTES	6 42	
SUBJECT INDEX		
INDEX OF DEFINITIONS	653	

xix