		v
Contents		

Contents

Preface IX

1	Synthesis and Processing of Nanostructured Films, and Introduction				
	to and Comparison with Plasma Electrolysis 1				
1.1	Why Nanostructures Are Important 1				
1.2	Different Types of Nanostructures 4				
1.3	Ability of Plasma Electrolysis in Nanostructure Fabrication 6				
1.4	Relation Between Plasma Electrolysis and Nanotechnology 9				
1.5	Growth Process of Nanostructured Films 12				
1.6	Electrolyte-Based Methods 12				
1.6.1	Electrodeposition 13				
1.6.2	Electroless Deposition 14				
1.6.3	Plasma Electrolysis 14				
1.7	Non-Electrolyte-Based Methods 15				
1.7.1	Hydrolysis 15				
1.7.2	Hydrothermal 15				
1.7.3	Sol–Gel Methods 16				
1.8	Introduction to Plasma Electrolysis 20				
	References 20				
2	Introduction to Plasma Concepts and Discharge Configurations 23				
2.1	What Is Plasma? 23				
2.2	Plasma Categorization 24				
2.3	Atmospheric Pressure Plasmas 25				
2.4	Applications of Atmospheric Plasma Methods 27				
2.4.1	Spectroscopic Analysis 27				
2.4.2	Material Processing 28				
2.4.3	Surface Treatments 28				
2.4.3.1	Surface Pre-Treatments 28				
2.4.3.2	Surface Coating 29				

Contents					
2.4.4	Bulk Material Treatments 31				
2.5	Optimization of Plasma Parameters for Fabrication of Uniform Nanostructures 31				
2.5.1	Design of Orthogonal Array and Signal-to-Noise Analysis 31				
2.5.1.1	Analysis of Variance (ANOVA) 32				
2.5.1.2	Size of Nanocrystalline Carbonitrides of Coatings 33				
2.5.1.3	Determination of Optimal Levels 34				
2.5.1.4	Confirmation Run 35				
2.5.2	Surface Response Method 36 References 40				
3	Characterization of Nanocrystalline Hard Coatings and their Use for Layers Fabricated by Plasma Electrolysis 43				
3.1	Evaluation of Hardness for Nanostructured Coatings 43				
3.2	Characterization of Nanostructured Coatings by X-Ray Diffraction and Nuclear Reaction Analysis 46				
3.3	Evaluation of Plasma Electrolytic Layers 50				
3.3.1	Average Size of Nanocrystallites for PE Layers 50				
3.3.2	Mechanical Properties for PE Layers 52				
3.3.3	Electrochemical Properties for PE Layers 57				
3.3.4	Coating Roughness for PE Layers 61 References 63				
4	Nanocrystalline Plasma Electrolytic Saturation 65				
4.1	Classification of Plasma Electrolysis 65				
4.2	Nanostructures Fabricated by the Plasma Electrolytic Saturation Process 66				
4.3	Characteristics of Cathodic Plasma Electrolysis 68				
4.3.1	Current-Voltage Trend 69				
4.3.2	Electrolyte 69				
4.3.3	Substrates 77				
4.4	Mechanism of Cathodic Plasma Electrolysis 78				
4.5	Morphological Aspects of Achieved Nanostructures 79				
4.5.1	Correlation Among Nanostructure and Properties of Layers 79				
4.5.2	Electrochemical Properties of Nanostructured Layers 80				
4.5.3	Mechanical Properties of Nanostructured Layers 83 References 83				
5	Corrosion Properties of Nanostructured Coatings Made				
	by Plasma Electrolytic Saturation 85				
5.1	Anti-Corrosion Properties of Nanostructured PES Coatings 85				
5.2	Relation Among Nanostructure and Corrosion Properties 97				
5.3	Optimization of Plasma Electrolytic Saturation Treatment 99				
5.3.1	Applied Voltage 102				
5.3.2	Applied Current 110				

VI

5.3.2

	Contents	VII
atings Made by Plas	ma	
nical Properties 16 on Treatment 164	2	
ectrolysis 195 96		
oatings 196 on Coatings 203		

5.3.3	Treatment Time 111				
5.3.4	Electrolyte Composition 113				
5.3.5	Pulse Parameters 114				
5.3.5.1	Frequency and Duty Cycle 114				
5.3.5.2	Wave Shape 122				
5.4	Substrate Study 128				
	References 137				
6	Mechanical Properties of Nanostructured Coatings Made by Plasma				
	Electrolytic Saturation 139				
6.1	Hardness 139				
6.2	Roughness 145				
6.3	Wear Protection 152				
6.4	Relation Among Nanostructure and Mechanical Properties 162				
6.5	Optimization of Plasma Electrolytic Saturation Treatment 164				
6.5.1	Applied Voltage 166				
6.5.2	Applied Current 167				
6.5.3	Treatment Time 168				
6.5.4	Electrolyte Composition 169				
6.5.5	Pulse Parameters 171				
6.5.5.1	Frequency and Duty Cycle 173				
6.5.5.2	Wave Shape 179				
6.6	Duplex Treatments 180				
	References 193				
7	Advantages and Disadvantages of Plasma Electrolysis 195				
7.1	Industrial Application of the Technology 196				
7.1.1	Fabrication of Ultra-Hard Nanocomposite Coatings 196				
7.2	Performance of Plasma Electrolytic Saturation Coatings 203				
7.2.1	Electrolyte 203				
7.2.2	Applied Current 205				
7.2.3	Cell Design 206				
7.3	Potential Application of the Technology 207				
7.4	Economic Assessment of the Technology 208				
	References 209				
8	Nanostructured Coatings Made by Plasma Electrolytic Oxidation 211				
8.1	Fabrication of Nanocomposites by Anodic Plasma Electrolysis 211				
8.2	Examples of Nanocomposite Coatings Fabricated by the PEO				
	Process 212				
8.2.1	Si ₃ N ₄ /TiO ₂ Nanocomposite Coating 212				
8.2.1.1	Fabrication Method 212				
8.2.1.2	Nanostructural Investigation 213				
8.2.1.3	Mechanical Properties 216				
8.2.2	Cu/TiO ₂ Nanocomposite Coating 222				

Contents 8.2.2.1 Fabrication Method 222 Nanostructural Investigation 222 8.2.2.2 8.3 Duplex Treatments 227 8.3.1 Fabrication Method 228 8.3.2 Nanostructural Investigation 230 8.3.3 Electrochemical Properties 230 References 235 9 Conclusions 237

Index 243