	-
	747

Contents

	ACK	nowleagements	XV
	Pref	face x	kvii
	PAR An i	RT 1 introduction to the subject of the plasma boundary	1
1	Sim	ple Analytic Models of the Scrape-Off Layer	6
	1.1	Solid Surfaces Are Sinks for Plasmas	6
	1.2	The Tokamak: An Example of a Low Pressure Gas Discharge Tube	8
	1.3	Tokamak Magnetic Fields	12
	1.4	The Scrape-Off Layer, SOL	15
		1.4.1 Limiter SOLs	15
		1.4.2 Divertor SOLs	17
	1.5	Characteristic SOL Time	19
	1.6	The 1D Fluid Approximation for the SOL Plasma	20
	1.7	The Simple SOL and Ionization in the Main Plasma	22
	1.8	1D Plasma Flow Along the Simple SOL to a Surface	26
		1.8.1 The Basic Features Reviewed	26
		1.8.2 Derivations of Results for 1D Plasma Flow in the Simple	•
		SOL	29
	1.9	Comparison of the Simple SOL and the Complex SOL	52
		Problems	53
		References	59
2	The	Role and Properties of the Sheath	61
	2.1	The Bohm Criterion. Historical Background	61
	2.2	The Maxwellian Velocity Distribution	64
	2.3	The Bohm Criterion; $T_i = 0$. Simple Derivation	70
	2.4	The Bohm Criterion when $T_i \neq 0$	76
	2.5	The Particle Flux Density to a Surface	78
	2.6	Potential Drop in the Sheath for Floating or Biased Surfaces	79
	2.7	Langmuir Probes	84

viii	Contents

	2.8	The Sheath Heat Transmission Coefficients. Basic Treatment	92
	2.9	Some Basic Consequences of the Existence of the Sheath	95
	2.10	The Solid Surface at an Oblique Angle to B: The Chodura Sheath	98
		Additional Problems	105
		References	109
3	Ехре	erimental Databases Relevant to Edge Physics	111
	3.1	Ion and Atom Back-scattering from Surfaces	111
	3.2	Particle-Induced Electron Emission	114
	3.3	Sputtering	116
		3.3.1 Physical Sputtering	118
		3.3.2 Chemical Sputtering of C by H	121
		3.3.3 The Energy of Sputtered Neutrals	124
		3.3.4 Radiation-Enhanced Sublimation, RES	125
	3.4	Trapping of Hydrogen in Surfaces	125
	3.5	Atomic Databases for Ionization, Dissociation and Radiation Rates	130
		3.5.1 Atomic Databases for Impurities	130
		3.5.2 Atomic Databases for Hydrogen	138
		Problems	146
		References	150
4	Simp	ole SOL	153
	4.1	The Simple SOL: The Sheath-Limited Regime	153
	4.2	'Straightening Out' the SOL for Modelling Purposes	153
	4.3	Relating Density Scrape-Off Length λ_n to D_{\perp}^{SOL}	155
	4.4	Modelling λ_n , λ_{T_e} , λ_{T_i} , etc Simultaneously	158
	4.5	Relating the Properties of Main and Edge Plasmas	161
	4.6	Particle Confinement Time, τ_p	167
		4.6.1 The Case with the Hard Boundary Condition	169
		4.6.2 The Case with the Soft Boundary Condition	175
		4.6.3 The Global Recycling Coefficient	179
	4.7	The Simple versus Complex SOL	181
	4.8	Comparison of High Recycling, Strongly Radiating and Detached	
		Regimes	183
	4.9	The Effects of Ionization within the SOL	185
	4.10	Parallel Temperature Gradients Along the SOL	187
		4.10.1 Calculating $T(s_{\parallel})$	187
		4.10.2 Criteria for Existence of Parallel Temperature Gradients	192
	4.11	Parallel Temperature Gradients in the Context of Electron-Ion	
		Equipartition	196
		4.11.1 An Initial Estimate of the Role of Equipartition in the SOL	
		4.11.2 Case A. $T_e = T_i$. No <i>T</i> -Gradient	197
		4.11.3 Case B. $T_e = T_i$. Significant T-Gradients Exist (Very	
		Strong Collisionality)	107

ix

	4.11.4	Case C. $T_e \neq T_i$. No Significant T-Gradients. Weak Col-	100
		lisionality (The Simple SOL)	199
	4.11.5	Case D. $T_e \neq T_i$. Significant Temperature Gradients Ex-	201
		ist. Intermediate Collisionality	201
		Equipartition near the Target	201
		Caveats Concerning Criteria for Equipartition and Existence of <i>T</i> -Gradients	202
	4.11.8	Overview of the Criteria for Equipartition and T-	
		Gradients. SOL Collisionality	204
		onal Problems	204
	Refere	nces	210
The	Diverto	r SOL	212
5.1	Why u	se Divertors Rather than Limiters?	212
	5.1.1	Production of Impurities by Ion Impact	213
	5.1.2	Impurity Production by Neutral Impact on Walls	214
	5.1.3	Transport of Impurities to the Main Plasma	214
	5.1.4	Removal of the Helium Impurity, Pumping	215
	5.1.5	Removal of Hydrogen, Pumping	217
	5.1.6	Efficient Use of Magnetic Volume	217
	5.1.7	Size of Plasma-Wetted Area	218
	5.1.8	Opportunity for Power Removal by Volumetric Loss Pro-	
		cesses	219
	5.1.9	Achievement of Plasma Detachment	220
	5.1.10	Energy Confinement	220
	5.1.11	Conclusions	220
5.2	The Ba	sic Two-Point Model of the Divertor SOL	221
5.3		onduction-Limited Regime. The High Recycling Regime	230
5.4	Extens	ions to the Basic Two-Point Model. 'Corrections'	232
5.5	Includi	ng the Hydrogen Recycle Loss Energy in the Two-Point	
	Model		237
5.6		asma-Wetted Area of Limiters and Divertors. The Parallel	
	Flux A	rea of the SOL	245
5.7	Expres	sions for the Power Scrape-Off Width, etc	252
	5.7.1	Introduction	252
	5.7.2	Case of Negligible Parallel T-Gradient	252
	5.7.3	Case of Significant Parallel T-Gradient	253
5.8	SOL C	ollisionality and the Different Divertor Regimes	264
5.9		or Asymmetries	267
5.10		fect of Divertor Geometry	270
5.11		godic Divertor	270
	Additio	onal Problems	273
	Defere	nces	274

5

Contonto
Contents

6	Plas	sma Im _j	purities	277
	6.1	Introd	uction: Harmful and Beneficial Effects of	
		Impur	ities	277
	6.2	The T	hree Principal Links in the Impurity Chain	280
		6.2.1	The Source	281
		6.2.2	Edge Transport	282
		6.2.3	Transport in the Main Plasma	283
	6.3	Measu	ring the Impurity Source	283
	6.4	Model	ls for 1D Radial Transport	287
		6.4.1	The Engelhardt Model	287
		6.4.2	The Controlling Role of Edge Processes in Impurity Behaviour	293
		6.4.3	The Questionable Concept of 'Impurity Screening'	293
	6.5	Impur	ity Transport Parallel to B in the SOL	296
		6.5.1	Introduction	296
		6.5.2	Defining the 'Simple One-Dimensional Case' for Mod-	
			elling Impurity Retention by Divertors	297
		6.5.3	The Parallel Forces on Impurity Ions	298
		6.5.4	A Simple 1D Fluid Model of Impurity Leakage from a Divertor	303
		6.5.5	Estimating Divertor Leakage	313
	6.6	Edge I	Impurity Source/Transport Codes	323
		6.6.1	Why Have Codes?	323
		6.6.2	Interpreting Edge Impurity Measurements Using Codes	324
		6.6.3	Edge Fluid Impurity Codes	328
		6.6.4	Monte Carlo Impurity Codes	328
	6.7	Heliun	n and Pumping	336
	6.8	Erosio	n and Redeposition of Solid Structures at the Plasma Edge	342
		Additi	onal Problems	343
		Refere	ences	355
7	The H-Mode and ELMs			358
		Refere	nces	366
8	Fluc	tuation	s in the Edge Plasma	368
		Refere		376
	PAR Intro		n to fluid modelling of the boundary plasma	379
			action to Part II	381

		Contents	XI
9	The 1	ID Fluid Equations	384
	9.1	Introduction	384
	9.2	The Kinetic Equation	384
	9.3	The Conservation of Particles Equation	385
	9.4	The Momentum Conservation Equation	386
	9.5		392
	9.6	The Energy Conservation Equation, T_{\parallel}	392
	9.7	The Energy Conservation Equation, T_{\perp}	396
	9.8	The Parallel Viscous Stress	397
	9.9	The Conservation Equations Summarized	399
	9.10	The Sheath-Limited Regime	400
	9.11	The Conduction-Limited Regime	401
	9.12	Self-Collisionality and the Problem of Closing the Fluid Equations	402
		References	402
10	1D N	lodels for the Sheath-Limited SOL	404
	10.1	Introduction	404
	10.2	The 1D Isothermal Fluid Model	404
	10.3	Isothermal Model. Non-Constant Source S_p	406
	10.4	The Effect of Neutral Friction on Plasma Flow Along the SOL	406
	10.5	Other 1D Models for the Sheath-Limited SOL	408
	10.6	The Kinetic 1D Model of Tonks and Langmuir. Cold Ions	409
	10.7	Kinetic Models for $T_i \neq 0$	413
	10.8	Adiabatic, Collisionless Fluid Models	416
	10.9	Adiabatic, Strongly Collisional Fluid Models	419
	10.10	Adiabatic, Intermediate Collisional Fluid Models	419
	10.11	Comparing 1D Collisionless Kinetic and Collisionless Fluid Models	s 420
		References	422
11	1D N	fodelling of the Conduction-Limited SOL	423
	11.1	Introduction	423
	11.2	1D Fluid Modelling for the Conduction-Limited SOL	426
		References	436
12	'Oni	on-Skin' Method for Modelling the SOL	437
	12.1	The Concept of a SOL Flux Tube	437
	12.2	The Onion-Skin Method of Modelling the SOL	444
	12.3	Code-Code Comparisons of Onion-Skin Method Solutions with	4.47
		2D Fluid Code Solution of the SOL	447
		References	449
13	An I	ntroduction to Standard 2D Fluid Modelling of the SOL	450
		References	457

	PAR	T 3		
	Plas	ma Bou	indary Research	459
			uction to Part III	461
14	Sun	ersonic	Flow along the SOL	462
17			ffect on the SOL of Supersonic Flow Into the Sheath	462
			id-stream Sonic Transition for an Analytic Case	464
			sonic Solutions for an Analytic Case	467
		_	onic Solutions in Numerical Codes	468
	17.7	Refere		470
15	Flow		sal in the SOL	
13	. FION	Refere		471 476
	~.			
16			tachment	477
		Introdu		477
			round Relevant to Divertor Detachment	478
			mental Observations of Divertor Detachment	483
	16.4		standing Detachment	492
			Introduction	492
		16.4.2	Low Plasma Temperatures Necessary but Not Sufficient	
			for Detachment	493
		16.4.3	The Necessity of Volumetric Momentum and Power Losse	s493
		16.4.4	The Effect of Volume Recombination Acting Alone	495
		16.4.5	The Effect of Ion-Neutral Friction Acting Alone	497
		16.4.6	The Combined Effect of Ion-Neutral Friction and Volume	
	¥		Recombination on Detachment	502
		16.4.7	2D Fluid Code Modelling of Divertor Detachment using	
			the UEDGE Code	505
		16.4.8	The 'Cause' versus the 'Explanation' of Detachment	508
		Referen		510
17	Curi	ents in	the SOL	512
		Introdu		512
			pelectric Currents Driven by Cross-Field Temperature Gra-	312
	17.2	dients	octobale Carrolla Divon by Cross-1 loid Temperature Gra-	513
			Case A. Segmented Limiter with $j_{\perp} = 0$	514
			Case B. Continuous Limiter with $j_{\perp} = 0$	514
			Case C. Segmented Limiter with $\sigma_1^{\text{cond}} \to \infty$	
				516
	172		Case D. Continuous Limiter with $\sigma_{\perp}^{\text{cond}} \to \infty$	517
	17.3	Interrir	$V_{\text{plasma}}^{\text{SOL}}(r)$ from Probe Measurements of $V_{\text{float}}(r)$ and	50 0
	17.4	$T_e(r)$	Tala and no man	520
			pelectric Currents Driven By Parallel Temperature Gradient	
	17.5		Field Currents	525
			Experimental Results	525
		17.5.2	Simple Models for σ_{\perp}	527

		Contents	xiii
	17.6	17.5.3 Models for σ _⊥ in a Tokamak A Concluding Comment	530 535
		References	535
18	Drif	ts in the SOL	537
	18.1	Experimental Observations Implying the Presence of Drifts in the	2002000
	10.0	SOL	537
		Definitions The Consequences of F v. P. Drifts	539
	10.3	The Consequences of $E \times B$ Drifts 18.3.1 The Radial and Poloidal $E \times B$ Drifts	542 542
		18.3.2 Comparison of Drift Fluxes with the Basic SOL Fluxes	546
		18.3.3 Comparison of Radial and Poloidal Drift Fluxes	546
		18.3.4 The Effect of Poloidal $E \times B$ Drift on SOL Asymmetries	548
		18.3.5 The Effect of Radial $E \times B$ Drift on SOL Asymmetries	553
		18.3.6 Comments on the Effects of Radial and Poloidal $E \times B$	
		Drifts	555
		Diamagnetic Drifts and Currents in the SOL	556
		Pfirsch–Schlüter flows	561
	2 2 2	Heat Flux Drifts in the SOL	565
		Two Alternative Descriptions of Drifts	565
	18.8	A Concluding Comment References	568 568
19	The	Relation Between SOL and Main Plasma Density for Divertors References	570 574
20		acting $\chi_{\perp}^{ m SOL}(r)$ From Target Plasma Data Using the Onion-Skir	
	Metl		<i>575</i>
		The General Method	575
		A Simple Two-Point Model for Estimating χ_{\perp}^{SOL} and n_u Examples from JET	580 582
	20.5	References	586
21		surements of $D_{\perp}^{ m SOL}$, $\chi_{\perp}^{ m SOL}$ and the Decay Lengths for Diverton	
	SOL	s References	588
			602
22	MAI		603
		Experimental Observations	603
		Modelling MARFEs	605
	22.3	Divertor MARFEs	612
		References	614
23	The	Radiating Plasma Mantle	615
		References	620
24	$Z_{\rm eff}$,	$P_{\rm rad}$ and the Relation Between Them	621
		References	628

		0
xiv	Contents	

25	Furt	her Aspects of the Sheath	629
		The Ion Velocity Distribution at the Sheath Edge	629
		The Case of B Parallel to the Solid Surface	634
		The Bohm-Chodura Boundary Conditions and the Density Gra-	00
		dient at the Entrance to the Sheaths	643
	25.4	The Sheath Boundary Conditions in the Presence of $E \times B$ and	٠
		Diamagnetic Drifts	645
	25.5	Expressions for the Floating Potential, Particle and Heat Flux	
		Densities Through the Sheath	646
		References	655
26	Kine	tic Effects and Corrections to Collisional Expressions	656
		Introduction	656
1	26.2	Kinetic Correction for Parallel Heat Conductivity	657
		TT' I' O I O I O II O II O II O II O II	664
,	26.4	Kinetic Correction for the Parallel Temperature Gradient Force	
		C 00 :	664
		References	665
27 Impurity Injection Experiments			667
	27.1	T 1 1 Am III III III II II II II II II II II II	667
		27.1.1 Single-Reservoir Model	669
			670
		27.1.3 Modelling which Uses an Edge Impurity Code and Both	
		Divertor and Main Plasma Spectroscopic Signals	682
	27.2		683
		27.2.1 Simple Analytic Models for the Penetration Factor (Con-	
		finement Time) Based on a 'SOL Sink Strength' Parameter	685
			688
		References	689
App	Appendix A Solutions to Problems		
]	Index	K	704