TABLE OF CONTENTS

Preface	ix
About the Author	xi
Acknowledgements	xiii
Nomenclature	xv
List of Figures	xix
List of Tables	xxv
1. Introduction	1
 Applications of Two-Phase Flow at Microgravity Conditions Simulation of Microgravity Conditions 	2 3
3. Scope of this Book	4
2. Classification of Gas-Liquid Flow Patterns	5
1. Horizontal Flows On-Ground	5
2. Vertical Flows On-Ground	6
3. Flow Patterns at Reduced-Gravity Conditions	7
3. Flow Pattern Transition Models	15
1. Models for Horizontal Flows On-Ground	15
2. Models for Vertical Upward Flows On-Ground	17
3. Extension of Ground Models to Conditions at Reduced Gravity4. Modeling at Reduced Gravity	20 22
4. Gas-Liquid Flow Pressure Drop	29
1. Momentum Equations	29
2. Empirical Methods	29
3. Experimental Results at Reduced-Gravity Conditions	32
4. Comparison of Experimental Data with Empirical Methods	36
5. Void Fraction	39
1. Introduction	39
2. Instrumentation	41
3. Experimental Results and Comparisons	45
4. Void Fraction Distribution Coefficient	49
5. Signal Analysis and Probability Density Functions	53 64
6. Conclusions	04

⁄iii	Table of Contents
------	-------------------

6. Gas-Liquid Flow Heat Transfer	67
1. Experimental Facility and Procedure	68
2. Transient Effects	71
3. Experimental Results	91
4. Measurement Error and Uncertainty	100
5. Local Heat Transfer Coefficients	101
6. Mixed Convection	107
7. Empirical Correlations	108
7. Modeling Periodic Slug Flows Using a Volume of Fluid Method	123
1. Assumptions	123
2. Governing Equations	124
3. Interface-Tracking Model	124
4. Boundary Conditions	124
5. Superficial Two-Phase Flow Parameters	126
6. Numerical Implementation	127
7. Volume of Fluid Interface-Tracking Method	127
8. Model Geometry	128
9. Simulation Results	128
10. Conclusions	135
8. Summary and Conclusion	139
Appendix A	141
Appendix B	185
References	229
Index	233