Contents

	Preface	v
	Introduction	xvii
1	General Dispersion Relation for a Collisionless Inhomogeneous Plasma	1
1.1	General form of the dispersion relation	3
1.1.1	The dispersion relation for a homogeneous plasma	3
1.1.2	Potentials of the perturbed field	
1.1.3	Electrodynamic equations in terms of ϕ , A_2 , A_3	4 5
1.1.4	General form of the dispersion relation for an	
	inhomogeneous plasma	6
1.2	Equilibrium	8
1.2.1	Constants of motion	8
1.2.2	Equilibrium distribution function	9
1.2.3	Equation of transverse equilibrium	10
1.2.4	Equilibrium trajectories	11
1.3	Perturbed distribution function	12
1.4	Permittivity of an inhomogeneous plasma	14
2	Simplified Dispersion Relations	16
2.1	Permittivity and dispersion relations for low-frequency long-wavelength perturbations	17
2.1.1	Permittivity for long-wavelength low-frequency	
	perturbations	18
2.1.2	Splitting of the general dispersion relation in the	
	$approximation \ k_\perp ho ightarrow 0$	19
2.1.3	Dispersion relations for low-frequency long-wavelength	0.0
011	perturbations with $k_z = 0$	20
2.1.4	Permittivity of a force-free plasma	22
2.1.5	Permittivity of a plasma flow with an inhomogeneous	0.0
	velocity profile	23

viii	Electromagnetic Instabilities in an Inhomogeneous Plasma	
2.1.6	Allowance for the interaction of Alfven perturbations with resonant particles	24
2.2	Dispersion relations for short-wavelength perturbations with $k_z = 0$	25
2.2.1	Perturbations with $E \perp B_0$	26
2.2.2	Perturbations with $E \parallel B_0$	30
2.3	Oblique short-wavelength perturbations	31
2.3.1	Low-frequency perturbations	31
2.3.2	Perturbations with $\omega \simeq \Omega_{\rm i}$	32
2.4	Electromagnetic perturbations in a low- β plasma	33
3	Inertialess Magneto-drift Instabilities in a Collisionless Finite- β Plasma	35
3.1	Tserkovnikov's magneto-drift instabilities	38
3.2	Transverse drift waves	40
3.3	Instabilities with finite k_z	42
3.3.1	Electron drift wave branch	43
3.3.2	Magneto-drift oscillation branch	45
3.3.3	Influence of finite β on the ion temperature-gradient	
	drift instability	48
3.3.4	Suppression of the ion temperature-gradient drift	10
2.4	instability in a plasma with $\beta \gg 1$	$\frac{49}{47}$
3.4	Instabilities with large k_z Influence of finite β on the ion temperature-gradient	41
3.4.1	$drift\ instability$	48
3.4.2	Suppression of the ion temperature-gradient drift	7-
3.4.2	instability in a plasma with $\beta \gg 1$	49
3.5	Systematization of the results	51
4	Alfven Magneto-drift Instabilities in a Finite- β Plasma	53
4.1	Alfven perturbation branches for finite β and $k_{\perp}\rho_i \rightarrow 0$	55 <i>55</i>
4.1.1	Perturbations with $k_z = 0$	56
$4.1.2 \\ 4.2$	Perturbations with $k_z \neq 0$ Interactions of drift-Alfven waves with resonant	00
4.2	particles for $k_z = 0$	57
4.2.1	Resonant interaction of the waves with electrons	57
4.2.2	Resonant interaction of waves with ions	58
4.2.3	The zeroth approximation in the parameters $\omega/k_z v_{Te}$	
•	and $k_z v_{Ti}/\omega$	<i>59</i>
4.3	Role of resonant particles in Alfven perturbations with	
	$k_z v_{T\mathrm{i}} \ll \omega \ll k_z v_{T\mathrm{e}}$	59
4.3.1	The zeroth approximation in the parameters $\omega/k_z v_{Te}$	
	$and k_z v_{Ti}/\omega$	59

Contents	ix

4.3.2	Interaction of waves with resonant electrons	60
4.3.3 4.4	Ion resonance of the type $\omega = k_z v_z + \omega_{\rm di}$ for $\omega/\omega_{\rm di} < 0$ Role of resonant particles in Alfven perturbations with	61
	$\omega \simeq k_z v_{Ti} \text{ for } \nabla T = 0$	63
4.5	Correspondence between Alfven perturbations and the flute instability in finite- β plasma	65
5	Low-frequency Instabilities in a Two-energy Component Plasma	67
5.1	Gradient excitation of the fast magnetoacoustic waves	71
- 0	by high-energy particles	71
5.2	Drift-mirror instability	72
5.3	Gradient excitation of Alfven waves by high-energy	75
- 0 1	particles	75 ~ a
5.3.1	Instability of long-wavelength Alfven perturbations	76 ~~
5.3.2	Instability of the short-wavelength Alfven perturbations	77
6	Electromagnetic Instabilities in a Strongly	
	Inhomogeneous Plasma	80
6.1	Short-wavelength perturbations in a finite- β Maxwellian	
0.1	plasma	84
6.1.1	The $k_{\perp}\rho_{\rm e} \rightarrow 0$ approximation	85
6.1.2	Electron damping of the ion-drift oscillation branch	86
6.1.3	Plasma with cold electrons	88
6.2	Drift-cyclotron instability in a finite- β plasma	88
6.2.1	Electrostatic magneto-drift drift-cyclotron instability	90
6.2.2	Electromagnetic drift-cyclotron instability	91
6.3	Electromagnetic lower-hybrid-drift (high-frequency	
	drift) instability in a finite- β plasma	93
6.3.1	Cold-electron plasma	94
6.3.2	Plasma with finite electron temperature	94
6.4	Drift loss-cone instability in a finite- β plasma	94
6.4.1	Cold-electron plasma	95
6.4.2	Hot-electron plasma	96
6.4.3	Stabilization by a warm plasma	97
6.5	Ion-cyclotron excitation of transverse drift waves	98
6.5.1	Ion-cyclotron instability of hydrodynamic type	gg
6.5.2	$Kinetic\ magneto-drift\ ion-cyclotron\ instability$	gg
6.6	Short-wavelength drift-Alfven (SDA) perturbations in a	
	finite- eta plasma	100
6.6.1	Oscillation branches	100
6.6.2	Hydrodynamic treatment of the SDA perturbations	101
6.6.3	Interaction of the SDA perturbations with resonant	
	electrons	101

x	Electromagnetic Instabilities in an Inhomogeneous Plasma	
6.7	Ion-cyclotron instability of the SDA perturbations	102
7	Description of Perturbations in a Plasma with Transverse Current	104
7.1 7.2	Electron equilibrium Ion equilibrium	105 108
7 .2.1	Ion distribution just after applying an alternating electromagnetic field to a plasma	108
7.2.2	Distribution of partially relaxing ions	108
7.2.3	Ions in a rotating plasma	109
7.3	Magnetic-field gradient	109
7.4	Equilibria previously discussed in the literature	110
7.5	Modification of the permittivity tensor	112
7.5.1	General remarks	112
7.5.2	The high-frequency approximation for $\epsilon_{00}^{(i)}$	113
7.6	Dispersion relation for electrostatic perturbations	114
7.6.1	The low-frequency approximation, with respect to electrons, for $\beta \ll 1$	115
7.6.2	Short-wavelength perturbations, with respect to	
	electrons, near the electron-cyclotron harmonics	116
7.6.3	The high-frequency approximation for hot electrons	116
7.6.4	The high-frequency approximation for cold electrons	117
7.7	Description of electromagnetic small-scale perturbations of low-frequency, with respect to	
	electrons	117
7.7.1	General expressions for $\epsilon_{\alpha\beta}(\alpha,\beta=1,2,3)$	117
7.7.2	Description of perturbations with $k_z = 0$	118
7.7.3	Description of perturbations in a plasma with cold electrons	119
7.7.4	Dispersion relation for perturbations with $k_\perp \rho_e \ll 1$ and	
•	$\omega \ll k_z v_{Te}$ in a plasma with finite electron temperature	120
7.8	Starting equations for large-scale perturbations	121
8	Transverse-current-driven Instabilities	124
8.1	Electromagnetic modified two-stream instability	126
8.2	Electromagnetic current-profile instability	128
8.3	Electromagnetic current-driven lower-hybrid-drift	
	instability	129
8.3.1	Oscillation branch in a cold-electron plasma	129
8.3.2	Instability in a cold-electron plasma	130
8.3.3	Stabilization in a hot-electron plasma with $\beta \gg 1$	130
8.4	Electrostatic and electromagnetic electron-acoustic	10-
	instabilities	131

Contents xi

8.5	Oblique current-driven instabilities with $k_\perp \rho_{\rm e} < 1$ and $\omega < \Omega_{\rm e}$	132
8.5.1	Electrostatic perturbations	132
8.5.2	Electromagnetic perturbations with $\omega > k_{\perp}v_{Ti}$	133
8.5.3	Electromagnetic perturbations with $\omega \ll k_{\perp} v_{Ti}$	134
8.5.4	Allowance for the gradient effects	134
8.6	Instabilities with $k_{\perp}\rho_{\rm e} > 1$	$13\dot{4}$
8.6.1	Plasma with $\beta \gtrsim 1$	135
8.6.2	Oblique waves $\stackrel{\sim}{in}$ a plasma with $eta ightarrow 0$	136
8.6.3	Electron-cyclotron harmonics	136
8.7	Instabilities in a rotating plasma	137
9	Hydrodynamic Description of Collisional	
	Finite- β Plasma Perturbations	139
9.1	Drift hydrodynamics of a finite- β plasma	142
9.2	Multimoment transport equation set	143
9.3	Reducing the multimoment transport equation set by expansion in $1/B$	147
9.4	The simplest hydrodynamic equation set allowing for dissipative effects of order $\omega/\nu_{\rm i}$	149
9.5	Agreement between the moment method and the drift kinetic equation method	151
9.6	Hydrodynamic description of inertial perturbations, neglecting dissipative effects	152
9.7	Allowance for the transverse heat conductivity and transverse viscosity in perturbations with $\partial/\partial z = 0$	155
10	Starting Equations for Basic Types of Hydrodynamic Perturbations	156
10.1	Dispersion relations for perturbations with $k_z = 0$,	
	neglecting dissipative effects	158
10.1.1	Inertialess perturbations	158
10.1.2	Inertial perturbations	160
10.2	Dispersion relations for perturbations with $k_z = 0$	
	allowing for dissipative effects	161
10.2.1	Effects of order $\omega/\nu_{ m i}$	161
10.2.2	Effects of order $\nu_{\rm i} k_{\perp}^2 \rho_{\rm i}^2/\omega$	163
10.2.3	Allowance for the heat transfer	164
10.2.4		165
10.3	Starting equations for oblique perturbations	166
10.3.1	Perturbations with $k_z \simeq (\nu_e \omega)^{1/2}/v_{Te}$	166
	Perturbations with $k_z \simeq \omega/v_{Ti}$ in a weakly collisional	
	plasma	167
10 3 3	Perturbations in a high- β plasma with $k_* > \omega/v_T$:	169

xii	Electromagnetic Instabilities in an Inhomogeneous Plasma	
10.3.4 10.4	Perturbations in a strongly collisional plasma Dispersion relations for inertialess perturbations in a	170
	plasma flow with an inhomogeneous velocity profile	173
	Starting equations	173
10.4.2	Inertialess perturbations in a plasma flow with	
10.10	$\nabla n_0 = \nabla T_0 = 0$	174
10.4.3	Allowance for the density gradient Description of Alfven perturbations in a plasma flow	176
10.0	with an inhomogeneous velocity profile	177
10.5.1	Alfven perturbations when neglecting drift effects	177
	Magnetic viscosity tensor for $dU/dx \neq 0$, with $\tilde{B}_x \neq 0$	178
10.5.3		178
10.5.4	Dispersion relation of small-scale Alfven perturbations	
·	$for \nabla n_0 = \nabla T_0 = 0$	179
10.5.5	Dispersion relation of small-scale Alfven perturbations	
	for $\nabla n_0 \neq 0$, with $\nabla T_0 = 0$	179
11	Instabilities in a Collisional Finite- β Plasma	181
11.1	Magneto-drift entropy instabilities	184
11.1.1	Entropy perturbations when neglecting dissipative	
	effects	184
	The role of dissipative effects of order ω/ν_i	185
	The role of dissipative effects of order $(k_{\perp}\rho_{\rm i})^2\nu_{\rm i}/\omega$	185
11.1.4		186
11.2	Inertialess instabilities with $k_z \simeq (\nu_e \omega)^{1/2} / v_{Te}$	186
11.2.1	Magneto-drift instability in a plasma with $\nabla T = 0$	187
11.2.2	Instability of electron drift waves in a plasma with $\nabla T \neq 0$	188
11.3	Inertialess instabilities with $k_z \simeq \omega/v_{Ti}$ in a weakly	100
	collisional plasma	189
11.4	Inertialess instabilities in a strongly collisional plasma	190
11.5	Inertial instabilities	191
12	Instabilities in Force-free and Almost Force-free	
	High- β Plasmas	192
12.1	Inertialess instabilities in a force-free collisionless	
	high- eta plasma	195
	Plasma with $T_{\rm e}=T_{\rm i}$ and $eta o\infty$	195
	Plasma with $T_{\rm e} \neq T_{\rm i}$ and $\beta \rightarrow \infty$	196
	Instability boundaries for finite β	197
12.2	Inertialess instabilities in an almost force-free	
4004	collisionless high- β plasma	198
	Perturbations with small k _z	198
12.2.2	Perturbations with $v_{Ti} \ll \omega/k_z \ll v_{Te}$	199

Contents	xiii

12.2.3	Perturbations with $\omega \ll k_z v_{Ti}$	200
12.3	Inertialess instabilities in a weakly collisional plasma	200
	Perturbations with $k_z = 0$	200
12.3.2	Perturbations with finite k_z	201
12.3.3	Perturbations with $k_z \gtrsim (\omega \nu_{\rm i})^{1/2}/v_{T{\rm i}}$	202
12.4	Inertialess instabilities in a strongly collisional plasma	204
12.5	Alfven instabilities in a high- β plasma	205
	Instabilities in a force-free collisionless plasma	207
12.5.2	Kinetic instabilities in a collisionless plasma for	
	$\nabla B \neq 0$	208
12.5.3	Dissipative instabilities in a collisional plasma	209
13	${\bf Electromagnetic~Kelvin-Helmholtz~Instabilities}$	210
13.1	The ordinary Kelvin-Helmholtz instability	215
13.1.1	Single-fluid approach	216
13.1.2	Electrodynamic approach	217
13.1.3	Resemblance of the ordinary Kelvin-Helmholtz	
	instability to the Alfven instability in interpenetrating	
	plasmas	217
13.1.4	Correspondence between Kelvin-Helmholtz and	
	$Rayleigh-Taylor\ instabilities$	218
13.2	Kinetic theory of the ordinary Kelvin-Helmholtz	
	instability	219
13.3	The large-scale drift-Alfven Kelvin-Helmholtz	
	instability	220
13.4	The small-scale drift-Alfven Kelvin-Helmholtz	
	instability	221
•	Plasma with $\nabla n = \nabla T = 0$	221
13.4.2	The role of the density gradient	222
13.4.3	•	222
13.4.4		223
13.5	Drift magnetoacoustic Kelvin-Helmholtz instabilities	223
	Perturbations with $v_{Ti} \ll \tilde{\omega}/k_z \ll v_{Te}$	224
	Perturbations with $\tilde{\omega} \ll k_z v_{Ti}$	225
13.5.3	The role of the density gradient	226
14	Electromagnetic Drift Instabilities in a Low- β	
	Plasma	228
14.1	Kinetic drift-Alfven instability in a low- β plasma	230
14.1.1	The simplest results	230
14.1.2	The role of the temperature gradient	232
14.1.3	The role of the ion longitudinal motion	232
14.1.4		233
14.2	Resistive drift-Alfven instability	234

1101	Starting equations	235
14.2.2	Analysis of the dispersion relation	236
14.2.2 14.3	Use of the model collisional terms for electromagnetic	~00
14.0	density-gradient instabilities	237
14.3.1	General expression for the perturbed distribution	
14.0.1	function	237
1129	Electron permittivity	239
	Transverse ion permittivity	240
	Longitudinal ion permittivity	241
	Dispersion relation	241
	Long-wavelength drift-Alfven instabilities	243
14.3.7	Electromagnetic short-wavelength resistive drift	•
14.0	instability	243
14.4	Suppression of density-gradient instabilities in a	·
	finite- β plasma	243
14.4.1	Suppression of the kinetic drift-Alfven instability due to	
- 7 - 7	ion Landau damping	243
14.4.2	Suppression of the resistive drift-Alfven instability	246
14.5	Electromagnetic short-wavelength	-
	temperature-gradient instabilities	246
14.5.1	Oscillation branches	247
	The results of instability analysis	247
14.6	Hydrodynamic drift-Alfven instability in a plasma with	
	$eta \ll M_{ m e}/M_{ m i}$	249
15	Allowance for Magnetic-field Curvature Effects	250
15.1	Equilibrium	251
	Equilibrium magnetic field	251
	Constants of particle motion	252
15.1.3	Transverse equilibrium condition	253
15.1.4		254
15.2	Local permittivity	257
	Derivation of starting equations for the permittivity	257
15.2.2	The approximation of low-frequency long-wavelength	
	perturbations	260
15.3	Kinetic theory of local hydromagnetic perturbations in	0.01
	a finite- eta plasma	261
	Interchange perturbations	261
	Oblique perturbations with $\omega \ll k_{\parallel} v_{Ti}$	263
	Oblique perturbations with $v_{Ti} \ll \omega/k_{\parallel} \ll v_{Te}$	264
15.4	General analysis of long-wavelength perturbations at	064
	finite magnetic-field curvature	264
	Field of weak curvature and plasma with $\beta \simeq 1$	265
15.4.2	Field of weak curvature and plasma with $\beta \ll 1$	266

XV

15.4.3	Field of strong curvature	267
	The role of a cold plasma	<i>268</i>
$15.\overline{5}$	Two-fluid description of small-scale interchange	
	perturbations in a cylindrical finite- β plasma	269
16	Magnetic-field Curvature Effects in Kinetic and	
	Two-fluid Instabilities	273
16.1	Residual interchange instability	274
16.2	Transverse drift waves in a curvilinear magnetic field	275
16.3	Alfven instabilities in a two-energy component plasma	277
16.4	Magneto-drift entropy instabilities in a curvilinear	
	magnetic field	279
16.5	The destabilization effect of finite electron heat	
	conductivity in a curvilinear magnetic field	280
16.6	Influence of the curvature on instabilities in force-free	
	and almost force-free high- β plasmas	281
	References	282
	Index	291