CONTENTS OF PART B

V. Material Engineering for Fusion Nuclear Technology

The development of ferritic steels for DEMO blanket, A. Kohyama, A. Hishinuma, Y.	
Kohno, K. Shiba and A. Sagara	1
Progress in vanadium alloy development for fusion applications, D.L. Smith, H.M. Chung, H. Matsui and A.F. Rowcliffe	7
Recent advances in the development of SiC/SiC as a fusion structural material, <i>R.H.</i>	
Jones, L.L. Snead, A. Kohyama and P. Fenici	15
Treatment of irradiation effects in structural design criteria for fusion reactors, S. Majumdar and P. Smith	25
Ceramic breeder material development, N. Roux, S. Tanaka, C. Johnson and R. Verrall	31
New insights into the temperature effects on neutron irradiation of structural materials, <i>T. Muroga and N. Sekimura</i>	39
High flux dependence of erosion and retention in beam experiments and its signifi-	
cance to fusion systems, M. Nishikawa	47
Detailed study of radiation enhanced sublimation of graphite under high flux beam	
irradiation, Y. Ueda, K. Shiota, Y. Kitamura, Y. Ohtsuka, M. Isobe and M.	
Nishikawa	55
Beryllium-copper reactivity in an ITER joining environment, B.C. Odegard Jr., C.H.	62
Cadden and N.Y.C. Yang	63
An experimental study on the potential energy diagram for hydrogen isotopes on copper surfaces, I. Takagi, H. Hashimoto, H. Fujita and K. Higashi	73
Radiation damage studies on Ni implanted with high energy He and D ions, B .	79
Constantinescu, F. Vasiliu and G. Alexandru	19
Experimental evaluation of micromechanical damage produced by hydrogen in 316L steel for the first wall of fusion reactors, <i>J. Toribio</i>	85
An integrated approach to the modelling of hydrogen assisted failure in $316L$ steel, J.	
Toribio, R. Cortés, L. Caballero and A. Valiente	91
The influence of low-temperature neutron irradiation on physicomechanical properties of new reactor alloys saturated with tritium, V.V. Sagaradze, V.L. Arbuzov, B.N.	
Goshchitskii, V.D. Parkhomenko, Y.N. Zouev and V.V. Andryushin	97
Plasma driven tritium uptake and leakage through plasma facing materials, A.A.	,
Plasma driven tritum uptake and leakage through plasma facing materials, A.A. Pisarev, O.V. Ogorodnikova and M.O. Titkov	103
Helium embrittlement of Ti and P added austenitic alloys crept at 923 K, N.	105
Yamamoto, J. Nagakawa, Y. Murase and H. Shiraishi	111
Tritium barrier development for austenitic stainless steel by its aluminizing in a	
lithium melt, B.A. Kalin, V.L. Yakushin and E.P. Fomina	119
Hydrogen penetration through structural materials during hydrogen ion bombard-	
ment, A.G. Zaluzhnyi, V.P. Kopytin and M.V. Tcherednichenko-Alchevskiy	129