Contents

Part I Theory 1

1	Linear Response Theory Applications to IR Spectra of
	H-Bonded Cyclic Dimers Taking into Account the Surrounding.
	Updating Contributions Involving Davydov Coupling, Fermi
	Resonances and Electrical Anharmonicity 3
	Paul Blaise and Olivier Henri-Rousseau
1.1	Introduction 3

- 1.2 Dimer Strong Anharmonic Coupling Theory 3
- 1.2.1 Different Theoretical Situations 3
- 1.2.1.1 Strong Anharmonic Coupling Within Adiabatic Approximation For Monomer 3
- 1.2.1.2 Introduction of Fermi Resonances 6
- 1.2.1.3 H-Bonded Centrosymmetric Dimer 8
- 1.2.1.4 Dimer Involving Damping, Davydov Coupling, and Fermi Resonances 12
- 1.2.2 The Spectral Density 13
- 1.3 Comparison with Experiments 14
- 1.3.1 Carboxylic Acid Dimers Ignoring Fermi Resonances 14
- 1.3.1.1 Gaseous and Liquid Acetic Acid Dimers 14
- 1.3.1.2 Gaseous Acrylic and Propynoic Acids 15
- 1.3.2 Carboxylic Acids Taking Into Account Fermi Resonances 16
- 1.3.2.1 Crystalline Adipic Acid 16
- 1.3.2.2 Crystalline Polarized and Unpolarized Glutaric Acid Taking Into Account Fermi Resonances 17
- 1.3.2.3 Crystalline Thiopheneacetic Acid and Thiopheneacrylic Acids 17
- 1.3.2.4 l.2-Naphtylacetic Acid (2-NA) Crystals 20
- 1.3.2.5 Crystalline Aspirin Dimers Involving Slow Mode Morse Potential 23
- 1.3.2.6 Phthalic and Terephthalic Acid Crystals 25
- 1.3.2.7 Liquid Formic Acid Mixing of Monomer and Dimer 27

1.3.2.8	Crystalline Furoic Acid Dimer with Slow Mode Morse Potential and Fermi Resonances 28
1.3.2.9	Other Kinds of H-Bonded Compounds 31
1.3.2.10	Phosphinic Acid Dimer 31
1.3.2.11	Monomer of $(CH_3)_2 O \cdots HCl$ 33
1.4	Conclusion 36
1.5	Acknowledgment 36
	References 36
2	Dynamic Interactions Shaping Vibrational Spectra of
	Hydrogen-Bonded Systems 39
	Marek J. Wójcik, Mateusz Brela, Łukasz Boda, Marek Boczar, and Takahito
2.1	Nakajima Introduction 39
2.1	Theoretical Model of the Infrared Spectra of Gaseous $(CH_3)_2$ O-HCl and
2.2	$(CH_3)_2O$ -HF Complexes 42
2.3	Simulation of the Cl-H(D) and F-H Stretching Bands in the
	DME-H(D)Cl and DME-HF Complexes 45
2.4	Methodology of Molecular Dynamics 47
2.5	Spectroscopic Study of Uracil, 1-Methyluracil, and
	1-Methyl-4-thiouracil 49
2.6	Hydrogen Bond Interaction Dynamics in the Adenine and Thymine
	Crystals 50
2.7	Guanine and Cytosine Crystals 51
2.8	Spectroscopic Signature for Ferroelectric Ice 52
2.9	Conclusions 55
	Acknowledgment 56
	References 56
3	Trajectory On-the-Fly Molecular Dynamics Approach to
	Tunneling Splitting in the Electronic Ground and Excited
	States 67
~ ~	Tetsuya Taketsugu and Yusuke Ootani
3.1	Introduction 67
3.2	Semiclassical Tunneling Approach 69
3.3	Results and Discussion 71
3.3.1	Umbrella Inversion of Ammonia 72
3.3.2	Intramolecular Hydrogen Transfer in Malonaldehyde 73 Evailed State Intramolecular Hydrogen Transfer in Transland 75
3.3.3 3.4	Excited State Intramolecular Hydrogen Transfer in Tropolone 75 Conclusions 79
J. "	Acknowledgments 79
	References 80

Part II Spectroscopy 83

4	Spectroscopic Signatures of Low-Barrier Hydrogen Bonding in
	Neutral Species 85
4.1	Lidor Foguel, Zachary N. Vealey, and Patrick H. Vaccaro
4.1	Introduction 85
4.2	Spectroscopic Metrics for Hydrogen Bonding 87
4.2.1	Continuum of Hydrogen Bonding 87
4.2.2	Relationship to Tunneling 92
4.2.3	Ground-State Properties of Model Systems 93
4.2.4	Excited-State Spectroscopy of 6-Hydroxy-2-Formylfulvene 98
4.2.5	Ground-State Spectroscopy of 6-Hydroxy-2-Formylfulvene 102
4.2.6	Excited-State Properties of Model Systems 105
4.3	Concluding Remarks 108
	Acknowledgments 109
	References 109
5	Hydrogen-Bonding Interactions Using Excess
	Spectroscopy 123
	Yaqian Wang and Zhiwu Yu
5.1	Introduction of Hydrogen Bond 123
5.1.1	Definition of Hydrogen Bond 123
5.1.2	The Criteria of the Existence of Hydrogen Bonds 124
5.1.3	The Strength of Hydrogen Bonds 125
5.2	Theory of Excess spectroscopy 126
5.3	Studies of Hydrogen Bonds by Excess IR 129
5.3.1	Classical Hydrogen Bonds 129
5.3.2	Charge Assisted Hydrogen Bonds 131
5.3.3	Cooperative Resonance-Assisted Hydrogen Bonds 134
5.3.4	Weak/Moderate Hydrogen Bonds 138
	References 142
6	Intramolecular Hydrogen Bonding in Porphyrin Isomers 145
	Jacek Waluk
5.1	Introduction 145
5.2	H-Bond Characteristics 146
5.2.1	Porphine (1) 147
5.2.2	Porphycene (2) 148
5.2.3	Hemiporphycene (3) 150
6.2.4	Corrphycene (4) 152
5.2.5	Isoporphycene (5) 154

6.2.6Porphyrin-(2.2.0.0) (6)156

- 6.2.7 Porphyrin-(3.1.0.0)(7) 157
- 6.2.8 Porphyrin-(4.0.0.0) (8) 158
- 6.2.9 Inverted/Confused Porphyrin (9) 162
- 6.2.10 Neo-confused Porphyrin (10) 164
- 6.3 Correlations Between Geometry and HB Strength 165
- 6.4 Parameters That Can Describe the HB Strength 167
- 6.5 Tautomerization Mechanisms *168*
- 6.6 Summary 169 Acknowledgments 170
 - References 170

7 Isotope Effects in Hydrogen Bond Research 173 Poul Erik Hansen

- 7.1 Introduction 173
- 7.2 Hydrogen Bond Potentials 173
- 7.3 Calculations 175
- 7.4 Hydrogen Bond Types 176
- 7.5 Deuterium Isotope Effects on Chemical Shifts 176
- 7.6 Intramolecular Hydrogen Bonds 177
- 7.6.1 Two-Bond Deuterium Isotope Effects on ¹³C Chemical Shifts 178
- 7.6.2 Long-Range Isotope Effects 184
- 7.6.3 One-Bond Deuterium Isotope Effects on ¹⁵N Chemical Shifts in Solution 185
- 7.7 Biological Systems 185
- 7.7.1 Proteins 185
- 7.7.2 Deuterium Isotope Effects on ¹H Chemical Shifts 187
- 7.8 Intermolecular Hydrogen Bonds 187
- 7.9 Primary Isotope Effects 189
- 7.10 Isotope Effects and Acidity 191
- 7.10.1 Isotope Effects to Determine Protonation States 191
- 7.11 Solvent Isotope Effects and Exchange Rates 192
- 7.12 Exchange in the Solid-State 192
- 7.13 Hydrogen Bond Energies 193
- 7.14 Tautomerism 194
- 7.15 Solid-State NMR 197
- 7.15.1 Deuterium Isotope Effects on ¹⁵N Chemical Shifts 199
- 7.16 Conclusions 202 References 203

8 Intramolecular Hydrogen Bonding: Shaping Conformers' Structure and Stability 213 Gulce O. Ildiz and Rui Fausto

8.1 Introduction 213

- 8.2 The Halogen-Substituted Acetic Acids CF₃COOH, CCl₃COOH, and CBr₃OOH: Implications of IMHB on Structure and Conformers' Stabilities *215*
- 8.3 The Significance of IMHB in the *ortho* Chloro- and Fluoro-Substituted Benzoic Acids *219*
- 8.4 IMHB in Thiotropolone: Sculpturing the Bidirectional Infrared-Induced Bond-Breaking/Bond-Forming Tautomerization 225
- 8.5 Conclusion 228 Acknowledgments 229 References 229

9 Hydrogen Bonding from Perspective of Overtones and Combination Modes: Near-Infrared Spectroscopic Study 233 Mirosław A. Czarnecki, Yusuke Morisawa, and Yukihiro Ozaki

- 9.1 Introduction 233
- 9.2 Investigation of Hydrogen Bonding of Water by NIR Spectroscopy 235
- 9.3 The Chain Length Effect on the Degree of Self-association of 1-Alcohols 237
- 9.4 Combined NIR and Dielectric Study on Association of 1-Hexanol in *n*-Hexane 240
- 9.5 NIR Studies of Microheterogeneity in Alcohol/Alcohol and Alcohol/Alkane Binary Mixtures 241
- 9.6 Overtones of *v*C≡N Vibration as a Probe of Molecular Structure of Nitriles 244
- 9.7 Weak Hydrogen Bond in Poly(3-Hydroxybutyrate) (PHB) Studied by NIR Spectroscopy 246
- 9.8 Studies of Hydrogen Bonding By Use of Higher Overtones 249
- 9.9 Comparison of Hydrogen Bonding Effects and Solvent Effects on Wave numbers and Intensities of the Fundamental and First Overtone of the N-H Stretching Mode of Pyrrole Studied By NIR/IR Spectroscopy and One-Dimensional Vibrational Schrödinger Equation Approach 252
- 9.10 Summary 256 Acknowledgments 257 References 257
- Direct Observation and Kinetic Mapping of Point-to-Point Proton Transfer of a Hydroxy-Photoacid to Multiple (Competing) Intramolecular Protonation Sites 261 Dina Pines, Dan Eliovich, Daniel Aminov, Mark Sigalov, Dan Huppert, and Ehud Pines
- 10.1 Introduction 261
- 10.2 From Intermolecular Proton Transfer to Solvent to Intramolecular Point-to-Point Transfer in 1 : 1 Hydrogen-Bonding Complexes of Water with Bifunctional OH Photoacids 270

- Proton Transfer Along with Water Bridges in Acetonitrile (ACN)
 Spanning the Distance Between an Acidic and a Basic Side Groups of
 Bifunctional Photoacids 274
- 10.5 Time-Resolved Fluorescence Measurements of Proton Transfer along with Water Bridges 277
- 10.6 Isotope D/H Effect 283
- 10.7 Insights into the Mechanism of Proton Transfer Through One-Water Bridge in Bifunctional 2-Naphthols 285
- 10.8 Summary 288 Acknowledgments 289 References 289
- 11Spectroscopic Determination of Hydrogen Bond
Energies 293
 - Mausumi Goswami and Elangannan Arunan
- 11.1 Introduction 293
- 11.2 Binding Energy Measurement Involving Infrared (IR) Excitation 296
- 11.2.1 Measurement of the Dissociation Energy of H-Bonded Complexes Through Vibrational Pre-dissociation Dynamics via Infrared Excitation 296
- 11.2.1.1 Optothermal Bolometric Determination 297
- 11.2.1.2 Velocity Map Imaging 299
- 11.2.2 Determination of Gibbs Free Energy of H-Bonded Complex Formation By Infrared Spectroscopy 307
- 11.2.3 Measurement of Binding Energy of H-Bonded Complexes by IR–UV Double Resonance Spectroscopy 314
- 11.3 Determination of the Binding Energy of H-Bonded Complexes Using Spectroscopic Techniques Involving Electronic Excitation 316
- 11.3.1 Determination of H-Bond Dissociation Energy Through Multiphoton Ionization Techniques 316
- 11.3.2 Determination of the Dissociation Energy of Cationic H-Bonded Complexes Through Birge–Sponer Extrapolation 325
- 11.3.3 Determination of the Dissociation Energy of H-Bonded Complexes Using SEP-REMPI Technique 328
- 11.4 Estimation of the Well Depth of H-Bonding Interactions Through Microwave Spectroscopy 332
- 11.5 Conclusion 335 References 336
- 12 IR and NMR Spectral Diagnostics of Hydrogen Bond Energy and Geometry 345 Peter M. Tolstoy and Elena Yu. Tupikina
- 12.1 Introduction 345

- 12.1.1 Solving the Reverse Spectroscopic Problem 345
- 12.1.2 Spectral Markers for Proton Transfer and H-Bond Length 346
- 12.2 Spectral Characterization of Hydrogen Bond Geometry 348
- 12.2.1 Description of Hydrogen Bond Geometry 348
- 12.2.2 Averaging of NMR Parameters and Proton Tautomerism 350
- 12.2.3 NMR Hydrogen Bond Correlations 353
- 12.2.3.1 OHO Bonds ¹H Chemical Shifts 353
- 12.2.3.2 OHO Bonds ¹³C and ³¹P NMR Chemical Shifts 356
- 12.2.3.3 OHN Bonds 360
- 12.2.3.4 NHN Bonds 363
- 12.2.3.5 FHF, FHN, and FHO Bonds 365
- 12.2.3.6 Vicinal H/D Isotope Effects 369
- 12.2.4 IR Hydrogen Bond Correlations 371
- 12.2.4.1 Proton Donor Stretching Vibration 371
- 12.2.4.2 Proton Donor Deformational Vibrations 374
- 12.2.4.3 Carbonyl Stretching Vibration 375
- 12.3 Spectral Markers for Hydrogen Bond Energy 375
- 12.3.1 Defining Hydrogen Bond Energy 375
- 12.3.2 NMR Characterization of H-Bond Energy 377
- 12.3.3 IR Characterization of H-Bond Energy 378
- 12.3.3.1 Proton Donor Stretching Band Shift 378
- 12.3.3.2 Proton Donor Stretching Band Intensity 384
- 12.3.3.3 Proton Donor Deformational Vibrations 385
- 12.3.3.4 Low-Frequency Hydrogen Bond Stretching Frequency 385
- 12.3.3.5 Stretching Vibrations' Force Constants 386
- 12.3.3.6 Carbonyl Stretching Vibration 387 References 387
- 13 ATR-Far-Ultraviolet Spectroscopy Holds Unique Advantages for Investigating Hydrogen Bondings and Intermolecular Interactions of Molecules in Condensed Phase 409 Yusuke Morisawa, Takeyoshi Goto, Nami Ueno, and Yukihiro Ozaki
- 13.1 Introduction 409
- 13.2 Characteristics and Advantages of FUV Spectroscopy for the Studies of Liquids and Solids 410
- 13.3 FUV Spectroscopic Studies of Hydrogen Bonds and Hydration Structures of Electrolyte Aqueous Solutions 411
- 13.4 Quantum Chemical Calculations of the $\tilde{A} \leftarrow \tilde{X}$ Transition of Hydrated Group I Cations 412
- 13.5 Hydrogen Bonding States of Interfacial Water Adsorbed on an Alumina Surface Studied by Variable Angle-ATR-FUV Spectroscopy 416
- 13.6ATR-FUV and Quantum Chemical Calculation Studies of Hydrogen
Bondings in Amides 418
- 13.7 ATR-FUV and Quantum Chemical Calculation Studies of Hydrogen Bondings in Nylons 422

xii	Content
-----	---------

"	Contents	
	13.8	An ATR-FUV Study for Poly(ethylene glycol) (PEG) and Its Complex
		with Lithium Ion (Li ⁺) 424
	13.9	Summary and Perspective 427
		References 429
	14	Water-Hydrogen-Bond Network and Hydrophobic Effect 435
		Barbara Zupančič and Jože Grdadolnik
		Symbols and Abbreviations 435
	14.1	Introduction 436
	14.2	Bulk Water 438
	14.2.1	Temperature-Dependent Infrared Spectra of Bulk Water 439
	14.3	Water Near Fully Hydrophobic Solutes 442
	14.3.1	Verification of the Experimental Procedure 443
	14.3.1.1	Effects of Temperature and Pressure on the OD-Stretching Band 446
	14.3.1.2	Clathrate Formations 448
	14.3.2	Pure Hydrophobic Solutes in Water Solution 449
	14.3.3	MD Simulations of Purely Hydrophobic Solute in Water and the Origin
		of Strengthened Water-Water-Hydrogen Bonds Near Methane
		Molecule 453
	14.4	IR Spectroscopy of the Water Hydrogen Bonding in the Alcohol–Water Systems 455
	14.4.1	Importance of Alcohol–Water Systems 455
	14.4.2	IR Spectroscopy in the Study of Alcohol–Water Systems 455
	14.4.2.1	Overview 455
	14.4.2.2	
	14.4.2.3	Influence of Alcohol Concentration and Temperature 464
	14.5	Epilogue 470
		Acknowledgments 470
		References 471
	15	Hudroson Road Chains in Foldemore and Dunamic
	12	Hydrogen Bond Chains in Foldamers and Dynamic Foldamers 479
		David TJ. Morris and Jonathan Clayden
	15.1	Hydrogen-Bonded Foldamers 479
	15.2	Hydrogen-Bonded Dynamic Foldamers 488
	15.3	Reversible Hydrogen-Bond Directionality in Dynamic Foldamers 501
	15.4	Cyclic Hydrogen Bond Chains 508
	10.1	

References 514

Index 521