Contents

1	Intro	oduction to Plasma	1
	1.1	Fourth State of Matter: Plasma	1
	1.2	Brief Introduction to Plasma Physics World	3
	1.3	Collective Motion: The Debye Shielding	7
	1.4	Collective Motion: Plasma Oscillation	10
	1.5	Conditions for Plasma Collective Motion	12
	1.6	Introduction to Mathematical Models for Plasma	14
	1.7	Introduction to Computer Simulation for Plasma	15
		1.7.1 Computer Simulation Power and Uncertainty	
		in Computation	16
		1.7.2 Example Computer Simulation for the Debye	
		Shielding	25
	Refer	rences	26
2	Plasr	na in Equilibrium	29
_	2.1	Distribution Function and Plasma	29
	2.2	The Maxwell Distribution	31
	2.3	Plasma Density	35
	2.4	The Coulomb Collision	36
	2.5	Plasma Temperature	39
		2.5.1 Simulation of Temperature Relaxation	40
	Refer	rences	41
2	Sinal	a Dantiala Matian	42
5		Fountion of Motion	43
	2.1	Cyclotron Motion	43
	2.2	Drift Motion	44
	3.3 2.4	Magnetia Moment	43
	2.4 2.5	Single Dorticle Simulations	50
	3.5 3.6	Single Fatter Simulations	52
	J.U Dofor		55
	Refer		57

Contents

4	Equa	tions for Electromagnetic Field	59
	4.1	The Poisson Equation	59
	4.2	The Maxwell Equations	60
	4.3	Potential	63
	4.4	Introduction to Kinetic Particle Simulation Model for Plasma	64
		4.4.1 Structure of Particle-in-Cell (PIC) Code	65
		4.4.2 Field Solver	65
		4.4.3 Interaction Between Field and Particles	66
		4.4.4 Simulation of Electron Cloud with Laser Field	68
	Refer	ences	69
5	Plasn	na by Fluid Model	71
	5.1	Basic Fluid Equations	71
	5.2	Introduction to Plasma Simulation by the Euler Fluid Model	74
		5.2.1 Summary of Finite Difference Method (FDM)	75
		5.2.2 Example 2D Simulation for Convection	76
		5.2.3 Numerical Instability and Time Step Control	80
		5.2.4 Numerical Instability and Its Analysis	81
		5.2.5 Example Simulation for Jet Injection	82
		5.2.6 Example Simulation for Diffusion: Heat Conduction	85
	5.3	Introduction to Plasma Simulation by the Lagrange Fluid	
		Model	88
	5.4	Electron Plasma Wave	93
	5.5	Ion Acoustic Wave	97
	5.6	Electromagnetic Wave	99
	5.7	Magnetohydrodynamic Equation	101
	5.8	Frozen Magnetic Flux	104
	5.9	Waves in Magnetized Plasma	105
	Refer	ences	109
6	Plasn	na Treated by Distribution Function: Kinetic Model	111
	6.1	The Vlasov Equation	111
		6.1.1 The Klimontovich Equation	111
		6.1.2 The Liouville Equation	112
		6.1.3 The BBGKY Hierarchy and the Vlasov Equation	115
	6.2	Equilibrium Solution	118
	6.3	The Boltzmann Equation and Collision Effect	119
	6.4	Moment Equations and Fluid Model	120
	6.5	Dielectric Response Function for Unmagnetized Uniform	
		Plasma	122
	6.6	Plasma Oscillation and the Debye Shielding	126
	6.7	Electron Plasma Wave and the Landau Damping	128
	6.8	Electron Wave Propagation in Equilibrium Plasmas	129
	6.9	Physical Meaning of the Landau Damping	131
	6.10	Dispersion Relation for Transverse Electromagnetic Waves	133
	6.11	Dispersion Relation for Magnetized Uniform Plasma	135

	6.12	Waves in Magnetized Uniform Plasma	141
	Refer	ences	144
7	Plasn	a Instability	147
	7.1	Two-Stream Instability	147
		7.1.1 Two-Stream Instability by Fluid Model	147
		7.1.2 Two-Stream Instability by Distribution Function	150
		7.1.3 Example Simulation for Two-Stream Instability	152
	7.2	Ion Acoustic Instability	153
	7.3	Instability of Magnetized Plasma Column	154
		7.3.1 Example Simulation for the Sausage and Kink	
		Instabilities	157
	7.4	Interchange Instability—The Rayleigh-Taylor instability	
		and an Example Simulation	159
	7.5	The Kelvin-Helmholtz Instability and an Example	
		Simulation	162
	7.6	Parametric Instability	165
	7.7	The Weibel Instability	166
	7.8	Filamentation Instability and an Example Simulation	167
	7.9	Tearing Mode Instability and an Example Simulation	170
	7.10 D.C	Drift Instability	175
	Refer	ences	175
8	Short	t Introduction to Nonlinear Plasma Physics	179
	8.1	Solitary Wave: The Korteweg-de Vries (KdV) Equation	179
		8.1.1 The Korteweg-de Vries (KdV) Equation for Ion	
		Acoustic Wave	181
		8.1.2 Property of the Korteweg-de Vries (KdV) Equation	183
		8.1.3 Inverse Scattering Transform for the Korteweg-de	
		Vries (KdV) Equation	185
	8.2	The Burgers Equation and Shock Wave	186
	8.3	Plasma Echo	188
	8.4	A Glimpse at Turbulence	189
	Refer	ences	193
9	Appli	ications of Plasmas	197
	9.1	Plasma Process	197
	9.2	Electron Temperature Measurement by Single-Probe Method	197
	9.3	Plasma Jet	199
	9.4	Nuclear Fusion	200
		9.4.1 Fusion Reaction	201
		9.4.2 The Lawson Criterion—To Sustain Fusion Reaction	202
		9.4.3 MCF: Magnetic Confinement Fusion	203
		9.4.4 ICF: Inertial Confinement Fusion	205
	9.5	Laser Particle Acceleration	213
	9.6	Cluster Ion Interaction with Plasma	216

9.7 Control of Plasma: Dynamic Mitigation of Plasma			
Instabilities and Non-uniformities	218		
9.7.1 Control of Plasma: Theory	220		
9.7.2 Dynamic Control of Plasma Instabilities	222		
References	242		
Appendix A: Additional Readings			
Appendix B: Physical Constants and Mathematical Formulae			
Appendix C: Complex Analysis: Summary			
Appendix D: Derivation of Ponderomotive Force	269		
Appendix E: Parallel Computing by OpenMP	271		
Appendix F: Example 3D Pure Euler Fluid Code Structure	275		
Appendix G: Derivation of ϵ_{xx} in Eq. (6.151) for Magnetized			
Uniform Plasma	287		
Index	291		