1

Part I Introductory Systems and Plasma Fundamentals

Intro	oduction	to Systems Approaches to Nuclear Fusion	3
1.1	Fusion	Physics and Systems Approaches	3
	1.1.1	Fusion Reactors and Systems	3
	1.1.2	Detailed Monograph Organization	5
	1.1.3	A Simplified Description of Plasmas	7
	1.1.4	Tokamak Magnetic Field Coils and Geometry	9
	1.1.5	Plasma Current and MHD Fluid Equilibrium	11
	1.1.6	Plasma Pressure and Confinement Time	12
	1.1.7	Individual Particle Effects in Toroidal Systems	13
	1.1.8	Auxiliary Heating and Current Drive	14
	1.1.9	Elements of a Tokamak Fusion Reactor	14
1.2	System	s Engineering and Architecture Principles	16
	1.2.1	Elements, Relationships and Systems Thinking	16
	1.2.2	Hierarchy	16
	1.2.3	Aspects	17
	1.2.4	Models	17
	1.2.5	Agility	19
1.3	System	s Engineering Process Model	19
	1.3.1	Problem Solving Process, Systems Architecture	
		and Design	21
	1.3.2	Concept Development	21
	1.3.3	Constraints	22
	1.3.4	Metrics and Risk	22
1.4	System	s Emergent Properties, Robustness and Dynamics	23
	1.4.1	Emergent Properties of Systems	23
	1.4.2	Mechanisms for Robustness	24
	1.4.3	Robustness Trade-Offs	24
	1.4.4	Fragilities	25

2

	1.4.5	Resource Demands	25
	1.4.6	Performance	25
1.5	Examples	of Systems Engineering, Architecture, and Emergent	
		S	26
	1.5.1	Building a House	26
	1.5.2	Landing on the Moon and Returning	26
	1.5.3	Guiding an Airplane in Flight	26
1.6		Reverse Engineering	27
	1.6.1	Identifying Elements and Relationships in Existing	
		Devices	27
	1.6.2	Analysing Metrics and Emergent Properties	27
	1.6.3	Contributing Lessons Learned to the Design Space	28
1.7	Systems I	Forward Engineering – From Concept	
	2	ecture	28
	1.7.1	Developing a Solution-Neutral Function	28
	1.7.2	Developing and Implementing Concepts	28
	1.7.3	Organization of Project Management	29
1.8		Checklists of Systems Strategies for Fusion	30
	1.8.1	Systems Concepts Summary – Checklist 1.1	30
	1.8.2	Analyse Existing Plasma Physics and Nuclear Fusion	20
		Machines – Checklist 1.2.	30
	1.8.3	Design, Fund, Build and Commission New Fusion	20
	1.0.5	Machines – Checklists 1.3A and 1.3B	30
	1.8.4	Design and Carry Out Fusion Experiments	50
	1.0.1	on Existing Machines – Checklist 1.4	31
	1.8.5	Analyse Prototype Reactor Machines	51
	1.0.5	and Experiments – Checklist 1.5	32
	1.8.6	Planning and Building Next-Step Fusion Reactor	52
	1.0.0	Machines – Checklist 1.6.	32
	1.8.7	Designing and Building a Fusion Reactor –	54
	1.0.7	Checklist 1.7	32
	1.8.8	Comparing Approaches to Diverse Concept Fusion	52
	1.0.0	reactors – Checklist 1.8	33
	1.8.9	Detailed Checklists 1.1 to 1.8	33
Pafar			41
			71
Syste		Space for Tokamak Physics and Engineering	45
2.1	Developi	ng a Design Space	45
2.2	Detailed T	Views of Tokamak Design Space	46
	2.2.1	The Time View	46
	2.2.2	Time Scales and Design Options	47
	2.2.3	Plasma View	49
	2.2.4	Spatial View of Form	50
2.3	Engineeri	ing and Interface Analysis	50
	2.3.1	Engineering Aspects	50
	2.3.2	Interface Analysis	51

2.4	-	al Scenarios from Tokamaks with Less Than 700 kA	50
		urrent	53
	2.4.1	Strategy for Developing a Catalogue of Operational	50
		Scenarios	53
	2.4.2	TOSCA	55
	2.4.3	TCABR, Formerly TCA	56
	2.4.4	Neutral Beam Heating with PLT and COMPASS	57
	2.4.5	Tokamak T-10, Successor to T-3 and T-4	58
	2.4.6	HL-2A, Formerly ASDEX, and HL-2 M	59
	2.4.7	START	61
	2.4.8	GLOBUS-M and GLOBUS –M2	62
	2.4.9	QUEST	63
	2.4.10	General Fusion's Spector and SLiC	64
2.5	Design Sp	pace Catalogue of Tokamak Operational Scenarios	65
	2.5.1	Vacuum Vessel and Component Conditioning	65
	2.5.2	Plasma Start-Up and Current Ramp	65
	2.5.3	MHD Equilibrium and High Beta	66
	2.5.4	Particle and Energy Confinement and H-Modes	66
	2.5.5	Heating, Current Drive and Their Role in Controlling	
		Instabilities and Disruptions	68
	2.5.6	Divertor Radiation and Plasma-Wall Interaction	69
	2.5.7	Plasma Diagnostics and Machine Control	70
	2.5.8	High Power Tritium Burning and Alpha Particle	
	2.5.0	Heating	70
	2.5.9	Long Pulse and Steady-State Operation	71
2.6		Simulation Codes	72
2.0	2.6.1	Plasma Simulation and Design Codes	72
	2.6.2	Integrated Workflows of Simulation Codes	73
	2.6.3	Systems Engineering Codes	74
2.7		ent Design Options	74
2.7	-	0	74 78
	U	n of the Systems Design Space	
Kelere	ences		78

Part II High-Current Tokamaks

3

Ada	ptation
3.1	Systems Analysis Strategy for Doublet III/DIII-D
	3.1.1 Overall Strategy
	3.1.2 Application of Checklist 1.2
	3.1.3 Doublet III Form and Function Choices
3.2	Doublet III Experiments and Scenarios
	3.2.1 MHD Equilibrium

	3.2.2	Plasma Energy Confinement in Different MHD
		Equilibria
	3.2.3	Doublet III Scenarios
3.3	DIII-D	Design and Results
	3.3.1	Upgrade of Doublet III to DIII-D
	3.3.2	DIII-D Scenarios
3.4	DIII-D	Systems Analysis of Emergent Properties
	and Tra	deoffs
	3.4.1	Analysis of Emergent Properties
	3.4.2	Systems Control
	3.4.3	Fault-Tolerance
	3.4.4	Modularity
	3.4.5	Decoupling
	3.4.6	Resistance
	3.4.7	Avoidance
	3.4.8	Resource Demands
	3.4.9	Robustness
	3.4.10	Fragility
	3.4.11	Performance and Metrics
3.5	Asdex-	Upgrade
	3.5.1	Asdex-Upgrade Design
	3.5.2	Asdex-Upgrade Scenarios
	3.5.3	Robustness and Performance Analysis
3.6	Alcator	C and C-Mod
	3.6.1	Alcator and Alcator C-Mod Design
	3.6.2	Alcator C and C-Mod Scenarios
	3.6.3	Robustness and Performance Analysis
3.7	FTU	· · · · · · · · · · · · · · · · · · ·
	3.7.1	FTU Design
	3.7.2	FTU Scenarios
	3.7.3	Robustness and Performance Analysis
3.8	Spheric	al Tokamaks MAST, MAST-Upgrade and STEP
	3.8.1	MAST Design and Results
	3.8.2	Energy Confinement in MAST
	3.8.3	Robustness and Performance Analysis
	3.8.4	MAST Upgrade First Results
	3.8.5	STEP
3.9	Spheric	al Tokamaks NSTX and NSTX-U
3.10		spect Ratio with High Vertical Elongation ST-40
		sion of the Robustness and Performance of 1–2 MA
3.11	Discuss	

4	TCV	: A Case	Study in Systems Forward Engineering		
	of a MA Tokamak				
	4.1	Systems	Forward Engineering Strategy for TCV	125	
		4.1.1	Case Study Strategy	125	
		4.1.2	TCV Capabilities	126	
	4.2	Systems	Approaches to the Design of TCV	128	
		4.2.1	Suitability of TCV as a Case Study in Systems		
			Approaches	128	
		4.2.2	Systems Forward Engineering – Getting Started	128	
		4.2.3	Predecessor Tokamak TCA Design	129	
		4.2.4	TCA Technical Choices	129	
		4.2.5	TCV First Goals and Design Options	130	
	4.3	Review	and Prioritize Goals and Evaluate Variants for TCV	132	
		4.3.1	Systems Review Process in Early Stages		
			and Prioritizing Goals	132	
		4.3.2	Scenarios for TCV from the Tokamak Design		
			Space and Revised Priorities	132	
		4.3.3	The Intermediate Design Research Areas for TCV	133	
		4.3.4	Tokamak Systems Basic Parameters for Further		
			Design	133	
		4.3.5	TCV Systems Architecture	134	
		4.3.6	Scoping the Systems for Creating High Current		
			and Highly Elongated Plasmas	136	
		4.3.7	Power supply Requirements for Shaping and		
			Controlling Plasma	138	
		4.3.8	Phase I Proposal and Euratom Review	140	
		4.3.9	Phase II Proposal to Euratom	141	
	4.4		op Level Robustness Properties and Tradeoffs	142	
		4.4.1	Robustness	142	
		4.4.2	Fragility	143	
	4.5		nal Design for Construction	144	
		4.5.1	Phase II Committee Review and Approval	144	
		4.5.2	Systems Level Considerations for Final Design		
			and Construction	145	
		4.5.3	TCV System Level Final Design for Construction	145	
		4.5.4	Implementation	146	
	4.6		ubsystem-Elements Descriptions and Robustness		
			8	146	
		4.6.1	Toroidal Field Coils, Power Supplies and Systems		
			Analysis	146	
		4.6.2	Poloidal Field Coils, Power supplies and Systems	1.40	
			Analysis	148	
		4.6.3	Flywheel Motor Generator and Systems Analysis	151	

xiv

		4.6.4	Vacuum Vessel and Vacuum Equipment Systems	
			Analysis	151
		4.6.5	Management of Procurement, Construction	
			and Initial Testing	152
		4.6.6	Auxiliary Heating Upgrades for TCV	153
		4.6.7	Machine and Plasma Control and Data Acquisition	153
	4.7		enarios	154
	,	4.7.1	High Elongation Plasmas and Ohmic H-Modes	154
		4.7.2	Fully Digital Plasma Control	154
		4.7.3	Fully Non-inductive Steady-State Plasmas	10.
		4.7.5	with Electron Cyclotron Current Drive	155
		4.7.4	Limits of Operating Space for High Plasma	155
		4./.4	Elongation	155
		4.7.5	High Power Electron Cyclotron Heating	155
		4.7.5	•	155
		170	and Bootstrap Current Drive	155
		4.7.6	Electron Internal Transport Barriers	150
			with EC Current Drive	156
		4.7.7	H-mode Regimes with Ohmic Heating in H, D	
			and He	156
		4.7.8	Neutral Beam Current Drive and Heating	156
		4.7.9	Multi-machine ITER Scenario to Maximize Edge	
			Pedestal Height	156
		4.7.10	Exhaust Control and Detachment in Snowflake	
			and Super-X Divertors	157
		4.7.11	Vessel Wall Conditioning with ECRH	157
		4.7.12	Real Time Plasma Control Systems	158
		4.7.13	Disruption Avoidance by Real-Time Locked Mode	
			Prevention with ECCD	158
		4.7.14	Elimination of Disruption Runaway Electron Current	
			with Current Ramp Down	158
		4.7.15	High-βN Fully Noninductive Scenarios with	
			Combined EC and NBI	158
		4.7.16	Reduced Heat Flux with Grassy ELM's at High	
			Triangularity	159
		4.7.17	High-Shared-Flux Doublet Configuration	
			with Separate Lobe ECRH	159
		4.7.18	Removable Gas Baffles Separating Main	107
		4.7.10	and Divertor Chambers	159
	4.8	Lessons	Learned About Systems Forward Engineering	160
				160
				100
5	JET	- World'	s Largest Tokamak and its d-t Fusion Experiments Plus	
	TFT	R's		163
	5.1	Systems	s Analysis Strategy for JET	163
	5.2	JET Go	als, Machine Parameters and Systems Integration	164

	5.2.1	JET Design and Systems Architecting of Highest	
		Level Systems	164
	5.2.2	Elements of Next Level Systems, Form Relationships	
		and Design Choices	166
5.3	Operatio	nal and Experimental Evidence of Success in Machine	
	Operatio	m	168
	5.3.1	Initial JET Operation Pre-1989	168
	5.3.2	High Performance Plasmas in Preparation for Tritium	
		Experiments	169
	5.3.3	Analysis of Emergent Properties of Systems and	
		Robustness Against Faults	171
5.4	Neutron	and Fast Particle Diagnostics	173
	5.4.1	JET Plasma Diagnostics and the Role of Fusion	
		Product Diagnostics	173
	5.4.2	Fusion Products and Diagnostics	173
	5.4.3	Measurements with Neutron and Fast Particle	
		Diagnostics	175
	5.4.4	Robustness Analysis of Neutron and Fast Particle	
		Diagnostics	178
5.5	Prelimin	ary Tritium Experiments (PTE)	179
	5.5.1	Systems Design of Preliminary Tritium Experiments	
		(PTE)	179
	5.5.2	Preliminary Deuterium-Tritium Fusion Experiments	
		(PTE)	181
5.6	Full Pov	wer Deuterium-Tritium Experiments (DTE1)	184
	5.6.1	JET Optimization in Preparation for DTE1	184
	5.6.2	Machine Upgrades	184
	5.6.3	Experimental Preparation for $Q = 1$ Energy	
		Breakeven Experiments at High Power	185
	5.6.4	Systems Approaches to Planning Full Power	
		Deuterium-Tritium Fusion Experiments	186
	5.6.5	Deuterium-Tritium High Power Nuclear Fusion	
		Operational Scenarios and Results in JET	193
5.7	Post-DT	TE1 Operation in JET – Preparation for DTE2	197
	5.7.1	Planning for DTE2 Experiments in JET	198
	5.7.2	Extrapolated Baseline Scenario	199
	5.7.3	Extrapolated Hybrid Scenario at High	
		Normalized Beta	199
	5.7.4	Completed Preparations for d-t Experiments	199
	5.7.5	Successful DTE2 Operation	200
5.8		Power Experiments in TFTR	200
	5.8.1	Tokamak Fusion Test Reactor (TFTR) Design	200
	5.8.2	TFTR Experimental Results	201
	5.8.3	Robustness and Fragility Analysis	201
Refe	rences		202

xvi

Contents

5.1	System	s Analysis Strategy for Prototyping Reactor
	Subsys	tems
	6.1.1	Goals and Systems Architecture Choices for
		Superconducting and Steady-State Tokamaks
	6.1.2	Key Elements and Constraints of Steady-State
		Operation
5.2	-	Space for Superconducting and Long-Pulse
		aks
	6.2.1	Goals for Using the Design Space
	6.2.2	Technical Aspects of Superconducting Magnets
	6.2.3	Systems Architecture of Choices and Trade-Offs
5.3		Formerly T-7)
	6.3.1	Design
	6.3.2	Scenarios
	6.3.3	Robustness, Fragility and Relevance to Steady-State
		Operation
5.4		1-1M
	6.4.1	Design
	6.4.2	Scenario: 5 h Fully Non-inductive Steady-State
	())	Operation with LHCD
	6.4.3	Robustness, Fragility and Relevance to Steady-State
_	T 16	Operation
5.5	T-15	
	6.5.1	Design
	6.5.2	Scenario: Ohmic Heating in T-15 and Test of
	(5)	Superconducting Windings
	6.5.3	Robustness, Fragility and Relevance to Steady-State
	Taux C	Operation
6.6		upra, Later WEST, a Case Study of Prototyping a
	Superco 6.6.1	Design
		Design
	6.6.2	Scenarios
	6.6.3	Robustness, Fragility and Relevance to Steady-State Operation
5.7	WEET	1
). /		(Tungsten {Symbol "W"} Environment in Steady-State
		ak)
	6.7.1 6.7.2	Design
	0.7.2	Scenario: Plasma and Impurity Confinement
		in a Long Pulse, High Power, Tungsten Divertor
	672	Environment
	6.7.3	Robustness, Fragility and Relevance to Steady-State Operation

6.8	SST-1 (S	Steady-State Superconducting Tokamak)	224
	6.8.1	Design	224
	6.8.2	Scenario: LHCD	225
	6.8.3	Robustness, Fragility and Relevance to Steady-State	
		Operation	225
6.9	EAST (E	Experimental Advanced Superconducting Tokamak)	225
	6.9.1	Design	225
	6.9.2	Scenarios	227
	6.9.3	Robustness, Fragility and Relevance to Steady-State	
		Operation	228
6.10	KSTAR	(Korea Superconducting Tokamak	
		ed Research)	228
	6.10.1	Design	228
	6.10.2	Scenarios	229
	6.10.3	Robustness, Fragility and Relevance to Steady-State	
		Operation	230
6.11	JT-60-U	(Japan Tokamak 60 m ³ Plasma: Upgraded JT-60)	230
	6.11.1	JT-60-U Design and Relevance to JT-60SA	230
	6.11.2	Scenarios	230
	6.11.3	Robustness, Fragility and Relevance to Steady-State	
		Operation	232
6.12	JT-60SA	(JT-60 Super Advanced)	232
	6.12.1	Design	233
	6.12.2	Commissioning Until Superconducting Coil	
		Connector Fault	234
	6.12.3	Robustness, Fragility and Relevance to Steady-State	
		Operation	234
6.13	Summar	y Evaluation of Robustness and Fragility	
		typing Fusion Reactor Subsystems	235
	6.13.1	Plasma Start-Up and Current Drive	235
	6.13.2	Resistance to Disruptions	235
	6.13.3	True Steady-State Operation	235
	6.13.4	Long Term Gas Inventory	235
	6.13.5	ITER	236
Refer	ences		236

Part III Prototype Tokamak Fusion Reactors

7 ITER: A Fusion Proto-Reactor and its Large Scale Systems Integration 241 7.1 Systems Analysis Strategy for the ITER Tokamak 241 7.1.1 Overall Systems Analysis Strategy 241 7.1.2 ITER Goals 241 7.1.3 ITER Top Level Parameters and Scoping 241 2.1.3 Comparisons 242

		7.1.4	Systems Engineering Approaches Used in	
			ITER Design and Construction	244
	7.2	Review	of Top Level Systems Architecture and Innovations	246
		7.2.1	Overall Systems Architecture	246
		7.2.2	Innovation	247
	7.3	Plasma	with Heating and Current Drive	248
		7.3.1	Design Choices	248
		7.3.2	Robustness, Fragilities and Opportunities	251
	7.4	Detailed	Subsystem Design and Emergent Properties	252
		7.4.1	Instability Coils	252
		7.4.2	In-Vessel Diagnostics	254
		7.4.3	Plasma Facing Components and Neutron Shield	254
		7.4.4	Test Tritium Breeding Modules (TBM)	255
		7.4.5	Divertor	256
		7.4.6	Vacuum Vessel and Disruption Mitigation	258
		7.4.7	Superconducting Magnetic Coils	259
		7.4.8	Auxiliary Heating and Current Drive	260
		7.4.9	Diagnostics and Control for Plasma and Neutrons	261
		7.4.10	Balance of Plant Including Power Systems, Cooling,	
			Refrigeration and Tritium Processing	264
	7.5	Systems	Aspects of Construction and Operation	264
		7.5.1	Systems Aspects of Machine Assembly and	
			Commissioning	264
		7.5.2	Systems Integration of Construction and Operation	265
		7.5.3	Preparation for Assembly and Commissioning	265
		7.5.4	Robustness and Fragilities of the Construction	
			Process	266
		7.5.5	Research Plans to Fulfil Goals	266
		7.5.6	Robustness and Fragilities of Physics Research	
			Programme	267
	7.6	Conclus	sions and Lessons for Future Machines	267
		7.6.1	Conclusions on Systems Approaches	267
		7.6.2	Lessons for Future Machines	267
	Refer	ences		268
8	Demo	nstratio	n Tokamak Fusion Reactors and Their Systems	
Ū				273
	8.1		Strategy for Demonstration Tokamak Reactors	273
	0.1	8.1.1	Identify Goals and Essential Elements of a Fusion	215
		0.1.1	Reactor	274
		8.1.2	Paths to an "ITER-based" Reactor	275
		8.1.3	Key Choices for Neutronics and Reactor	215
		00	Parameters	276
		8.1.4	Use Systems Codes to Develop Design Analysis	210
		5	Methods	279

8.2			
	a Fusion	Reactor – Case Study	282
	8.2.1	Use of Systems Approaches in the Staged Design	
		Approach in Europe	282
	8.2.2	Application of Systems Codes	284
	8.2.3	Systems Design Point Studies, Sensitivities	
		and Trade-Offs	288
	8.2.4	Systems Integration and Key Design Issues	289
	8.2.5	Fusion Blanket and Shield Thickness for DEMO	289
	8.2.6	Systems Management Structures	292
	8.2.7	Robustness and Fragilities	292
8.3	Japan De	emo and Fusion Reactor Designs and Their	
	Variation	18	293
	8.3.1	Current Japan DEMO Design	293
	8.3.2	Robustness of Japan DEMO Current Design	295
	8.3.3	Japan DEMO Designs and Options in Systems	
		Architecture	295
	8.3.4	Summary of Previous Design Variants	297
8.4	China Fu	sion Engineering Test Reactor (CFETR)	297
	8.4.1	Two Phase Design	297
	8.4.2	Tritium Fuel Cycle Studies for CFETR	297
	8.4.3	Toroidal Field Coils	298
8.5	Korea K-	-DEMO	298
	8.5.1	A High Field Reactor	298
	8.5.2	Fragility – Cyclotron/Synchrotron Radiation	299
8.6	USA DE	MO and Fusion Reactors	299
	8.6.1	A High Elongation Fusion Reactor	299
	8.6.2	Water or Liquid Nitrogen Cooled Toroidal	
		Field Coil Reactors	300
	8.6.3	Advanced Tokamak Reactors	300
8.7	Large Sc	ale DEMOs – Robustness and Fragilities	301
	8.7.1	Common Features of Large Scale DEMOs	301
	8.7.2	Robustness Summary for Large DEMO Machines	302
8.8	Very Hig	gh Magnetic Field Reactors	303
	8.8.1	SPARC (Soonest/Smallest Private-Funded	
		Affordable Robust Compact)	303
	8.8.2	ARC (Affordable Robust Compact)	305
	8.8.3	Innovations Required for Very High Field Reactor	307
	8.8.4	Fragilities of Very High Field Tokamaks	308
8.9	Compact	Spherical Tokamak Fusion Reactors	310
	8.9.1	ST-135 and STEP (Spherical Tokamak for Energy	
		Production)	310
	8.9.2	USA Sustained High-Power Density (SHPD)	
		Tokamak Facility	312
		-	

	8.9.3	Robustness of Spherical Tokamak Reactors	312
	8.9.4	Fragilities of Spherical Tokamak Reactors	313
	8.9.5	A Pulsed Reactor Concept Using Coaxial Helicity	
		Injection	313
8.10	Summary		314
Refer	rences		315
Part IV	Helical, Li	near and Inertial Fusion Reactor Concepts	

9	Helio	cal Fusio	n Reactor Concepts	321
	9.1	Introdu	ction to the Stellarator and Heliotron Families	321
		9.1.1	Systems Analysis Strategy	321
		9.1.2	Magnetic and Coil Configuration	322
		9.1.3	Early History of Stellarator Development	323
		9.1.4	Required Properties of Stellarator Fields	324
		9.1.5	Main Stellarator Configurations and Design Space	
			Options	324
		9.1.6	MHD Equilibrium and Stability	325
		9.1.7	Particle and Energy Transport	325
		9.1.8	Symmetry and Stellarator Design Space	
			Optimization Criteria	327
		9.1.9	Coil Errors and Tolerances	328
	9.2	Wende	lstein7-AS (W7-AS)	329
		9.2.1	W7-AS Systems Architecture and Technical	
			Choices	329
		9.2.2	W7-AS Stellarator Field Optimization	331
		9.2.3	W7-AS Operational Scenarios	332
		9.2.4	W7-AS Goals Achieved, Robustness	
			and Fragilities	334
	9.3	Wende	lstein 7-X: A Case Study in Systems Forward	
		Engine	ering of a Superconducting Helias	334
		9.3.1	Systems Analysis Strategy for the Superconducting	
			W7-X Helias as a Case Study	334
		9.3.2	Systems Approaches to the Design and First	
			Goals of W7-X	335
		9.3.3	Review and Prioritize Goals and Evaluate Variants	
			for W7X	337
		9.3.4	W7-X Revised Proposal, Robustness	
			and Tradeoffs	339
		9.3.5	W7-X Final Design for Construction	340
		9.3.6	Procurement, Construction, and Initial Testing	
			of W7-X	340
		9.3.7	W7-X Operational Scenarios	341
		9.3.8	W7-X Metrics and Performance	343

9.4	Heliotron	-E	343
		Heliotron-E Systems Architecture and Technical	
	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Choices	343
	9.4.2	Heliotron-E Operational Scenarios	344
9.5		-J, a Helical Axis Configuration	344
<i>J</i> .5	9.5.1	Heliotron-J Systems Architecture and Technical	211
	7.5.1	Choices	344
	9.5.2	Heliotron-J Operational Scenarios	345
9.6		ducting Large Helical Device (LHD)	345
9.0	9.6.1		545
	9.0.1	LHD Goals, Systems Architecture and Technical	346
	0.60	Choices	
	9.6.2	LHD Operation Scenarios	348
	9.6.3	LHD Robustness and Fragilities	349
9.7		e Helical Configuration Systems Architecture	
	-	ational Scenarios	350
	9.7.1	TJ-II Heliac	350
	9.7.2	Model Validation in Stellarators	352
	9.7.3	Uragan-2 M and Uragan 3-M Torsatrons	352
	9.7.4	H-1NF Heliac	352
	9.7.5	HSX	353
	9.7.6	WEGA/HIDRA	353
	9.7.7	Scyllac	353
	9.7.8	СТН	354
	9.7.9	NCSX	354
	9.7.10	Stellarator Robustness and Fragilities of Alternative	
		Architectures	355
	9.7.11	Comparison of Stellarators and Tokamaks	355
9.8		sion Reactor Concept HELIAS 5-B	356
2.0	9.8.1	Basic Design Considerations	356
	9.8.2	Updated Reactor Design	358
	9.8.3	A Systems Approach to Optimization	359
	9.8.4	Detailed Breeding Blanket Design	359
	9.8. 4 9.8.5	Balance of Plant	360
	9.8.6	Robustness and Fragilities	360
0.0	,	Fusion Reactor Concept FFHR-d1	360
9.9		1	360
	9.9.1	Basic Design	300
	9.9.2	A Systems Approach to Reactor Design and	2(1
		Optimization	361
	9.9.3	Use of Joints and High Temperature	
		Superconductors	362
	9.9.4	Helical Divertor	362
	9.9.5	A Liquid salt Breeding Blanket	363
	9.9.6	Robustness and Fragilities	363
	9.9.7	A Helical Volumetric Neutron Source FFHR-b2	364
9.10	Prospects	for Stellarators	364
Refere	ences		364

10	Linea	nr Magne	tic Traps, Field Reversal and Taylor-State	
	Confi	iguration	s	371
	10.1	Linear N	Mirror Systems	371
		10.1.1	Basic Magnetic Mirror Machine	371
		10.1.2	Minimum-B Magnetic Wells	372
		10.1.3	Direct Conversion and Reactor Systems Analysis	373
		10.1.4	Tandem Mirror TMX and TMX-Upgrade	374
		10.1.5	Tandem Mirror PHAEDRUS-B	375
		10.1.6	Tandem Mirror GAMMA 10	375
		10.1.7	Tandem Mirror KMAX	376
	10.2	Mirror H	Fusion Test Facility (MFTF) and MFTF-B – A Case	
		Study of	f Systems Forward Engineering	377
		10.2.1	Systems Forward Engineering and Architecture in	
			MFTF	377
		10.2.2	First Design Improvement of MFTF,	
			One Year Later	378
		10.2.3	Systems Review Process in Early Stages	379
		10.2.4	Alteration of MFTF to Tandem Mirror MFTF-B	379
		10.2.5	Revised Goals of MFTF-B	383
		10.2.6	Final Construction Status Report and Project	
			Cancellation	383
		10.2.7	Robustness, fragilities and Implications	
			of Cancellation	383
	10.3	Gas Tra	ps, Multiple Mirrors, Cusps and Field Reversal	384
		10.3.1	Gas Dynamic Trap (GDT)	384
		10.3.2	Multiple Mirror GOL-3 and GOL-NB	385
		10.3.3	Cusps	386
		10.3.4	Tri Alpha Energy C-2U and C-2W Field Reversed	
			Configuration	386
	10.4	Linear F	Fusion Reactors and Systems Design Space	387
		10.4.1	Physics of the Systems Architecture Design Space	387
		10.4.2	Design-Space Building-Blocks for Systems	507
		101.112	Architecture of Linear Machines	388
		10.4.3	Linear Fusion Reactors	390
		10.4.4	Synthesis of Linear Mirror Design Space	391
	10.5		l Versions of Linear Mirror Concepts	392
	10.5	10.5.1	ELMO Bumpy Torus (EBT)	392
		10.5.2	Nagoya Bumpy Torus (NBT-1 M)	392
		10.5.2	Auto-injection Mirror	392
	10.6		State $q < 1$ Torus: Spheromak and Reversed	572
	10.0		nch	393
		10.6.1	Spheromak, Reversed Field Pinch	575
		10.0.1	and Taylor State	393
		10.6.2	SSPX Spheromak	393 394
		10.0.2	551 A Spherolinak	394

		10.6.3	Reversed Field Experiment RFX-Mod	
			and RFX-Mod2	395
		10.6.4	MST and Reactor Studies	395
		10.6.5	Review and Prospects for RFP	396
	Refer	ences		397
11	Inerti	ial Fusion	and Magnetic Fast Pulsed Systems	401
	11.1	Systems	Analysis Strategy for Laser Inertial Confinement	401
		11.1.1	Introduction to Inertial Confinement	401
		11.1.2	Progress in Inertial Fusion Driver Concepts	402
		11.1.3	Challenges for Inertial Fusion Reactor	
			Development	404
		11.1.4	Systems Analysis Strategy	404
	11.2	Case Stu	dy of Architecture and Forward Engineering of NIF	405
		11.2.1	NIF Background	405
		11.2.2	NIF Systems Approach	405
		11.2.3	NIF Beamline Systems Architecture and Design	
			Space	407
		11.2.4	Highly Modular and Robust Construction	409
		11.2.5	Operation and Control Systems	409
		11.2.6	NIF Physics Results	409
		11.2.7	Computer Simulations of Inertial Confinement Laser	
			and Target Interactions	411
		11.2.8	Near Breakeven Production of 1.3 MJ	
			of Fusion Energy	411
		11.2.9	Laser Inertial Fusion Energy (LIFE) Reactor	412
		11.2.10	Overall Fusion Efficiency	412
		11.2.11	Laser Mega-Joule (LMJ) and ShenGuang III (SG-III)	
			Large Scale Indirect Drive Lasers	413
	11.3	Direct D	rive, Fast and Shock Heating and Alternate Laser	
		Technolo	ogies	413
		11.3.1	PETAL	413
		11.3.2	Direct Drive Laser Fusion with OMEGA	414
		11.3.3	Gekko and LFEX Lasers for Fast Ignition Realization	
			EXperiment (FIREX)	416
		11.3.4	The UK Central Laser Facility (CLF) and DiPOLE	418
		11.3.5	Petawatt and Exawatt Lasers	418
		11.3.6	Non-thermal p- ¹¹ B Fusion from Picosecond Lasers	419
	11.4	Design S	Space and Systems Approaches for Laser Fusion	419
		11.4.1	Design Space for a Laser Inertial Confinement Fusion	
			Reactor	419
		11.4.2	HiPER Laser Inertial Confinement Fusion Reactor	
			Project	423
		11.4.3	Detailed Systems Modelling of HiPER	425
		11.4.4	The Future for Laser Fusion Reactors	426

11.5	Magneti	ic Fast Pulsed Systems	427
	11.5.1	Dense Plasma Focus	427
	11.5.2	Plasma-Jet-Driven Magneto-Inertial	
		Fusion (PJMIF)	427
	11.5.3	MagLIF Z-pinch Experiments	427
	11.5.4	Z-pinch Fusion Reactor	429
11.6	Prospec	ts and Systems Robustness of Inertial	
	Fusion I	Reactors	429
Refer	ences		430

Part V Synthesis and Conclusions

12			Conclusions on the Applications of Systems	
			o Fusion Reactors	43
	12.1		s Developed and Lessons Learned	43:
	12.2		Systems Analysis Strategy for Comparing	
		Concep	ts by Systems Architecture	43
		12.2.1	Methods	43
		12.2.2	Systems Strategy for Comparing Different	
			Fusion Reactor Concepts	43
	12.3	Progress	s in Existing and Planned Machines	43
		12.3.1	Systems Level Performance Metrics:	
			Lawson Criterion and Triple Product	43
		12.3.2	The Cost Metric of Fusion Experiments	
			and Reactors	44
		12.3.3	Metrics, Scaling Laws, Systems and Predictive	
			Codes, Innovation and Breakthroughs	44
		12.3.4	The Central Role of ITER	44
	12.4	Pathway	ys Towards an Operating Fusion Reactor	44
		12.4.1	Pathways Towards a Working Fusion Reactor	
			for Each Concept	444
		12.4.2	Robustness and Fragilities of Different Concepts	44
		12.4.3	Tokamak Reactors	44
		12.4.4	Stellarator, Helias and Heliotron	44
		12.4.5	Mirrors, Linear Traps and Field Reversal	44
		12.4.6	Inertial Fusion	44
	12.5	Overall	Conclusions: Optimization of Fusion Reactors	
			ems Approaches	45
	Refer	References		
				45
Glo	ssary .	••••		45
nd	ex			459