Contents

Contributors Preface		ix xi
		XI
1.	Overview of DNA damage and double-strand breaks Fuyuhiko Tamanoi and Kenichi Yoshikawa	1
	1. DNA damages involving base modifications	1
	 DNA strand breaks Assays to detect DNA double-strand breaks 	2
	 Assays to detect DNA double strate breaks Effect of DNA structure, nucleosomes, and reactive oxygen species 	3
	5. Repair of DNA double-strand breaks	4
	References	5
2.	Quantitative evaluation of DNA double-strand breaks (DSBs) through single-molecule observation Kenichi Yoshikawa	7
	1. Introduction	7
	2. Single-molecule observation on DNA DSBs	8
	3. DSBs caused by γ -ray	9
	4. Real-time observation of DSBs	12
	5. DNA compaction exhibits marked protective effect against DSBs	16
	6. How to reduce DSBs caused by mechanical mixing	20
	7. Protective effect of antioxidant against various damage sources	22
	8. Future prospective	23
	Acknowledgments	24
	References	24
3.	Chromatin organization and DNA damage	29
	Katsuhiko Minami, Shiori lida, and Kazuhiro Maeshima	
	1. Introduction	30
	2. Chromatin compaction and radiation damage	34
	3. Regulation of chromatin organization to cope with DNA damage	42
	4. Conclusion and clinical implications	45
	Acknowledgments	46
	Competing interests	46
	References	46

v

4.	Mechanical force induced DNA double-strand breaks: Ultrasound	53
	Yue Ma and Iwaki Akiyama	
	1. Introduction	53
	2. Different ultrasound induced DNA damages	54
	3. Experimental system for ultrasound exposure	59
	4. Summary	61
	Acknowledgment	62
	References	62
5.	DNA damage and biological responses induced by Boron Neutron Capture Therapy (BNCT)	65
	Natsuko Kondo	
	1. Introduction	66
	2. DNA damage and repair mechanism induced by BNCT	69
	3. Biological effects of BNCT	72
	4. Closing remarks	75
	Reference	75
6.	Core level ionization or excitation and Auger relaxation induce	
	clustered DNA damage	79
	Akinari Yokoya and Yui Obata	
	1. Introduction: Radiation damage to DNA	80
	2. Clustered DNA damage	81
	3. Nucleobase excision repair enzymes as probes to detect nucleobase	
	lesions and AP sites	82
	4. DSBs arising from treatment with base excision enzymes	84
	5. Core level ionization or excitation by collision with swiftly moving high-LET	
	charged particles or irradiation with low-LET radiations	85
	6. Synchrotron radiation providing monochromatic soft X-rays induce Auger relaxation of particular elements in DNA	00
		88
	 Model of clustered damage induced after Auger relaxation of DNA constituent atoms 	00
	8. Pre-thermalized Auger electrons are highly localized by the Coulomb	90
	potential of the cation ion of the parent atom	02
	 9. Novel method to examine the repairability of various types of DNA 	92
	damage, and future prospects of studies on Auger relaxation and clustered	
	DNA damage	93
	10. Conclusion	93 96
	References	96 96
		90

7.	Auger electrons and DNA double-strand breaks studied by using iodine-containing chemicals	101
	Yuya Higashi, Yue Ma, Kotaro Matsumoto, Ayumi Shiro, Hiroyuki Saitoh,	
	Tetsuya Kawachi, and Fuyuhiko Tamanoi	
	1. Introduction	102
	2. lododeoxyuridine	103
	3. lodine containing DNA binding chemicals	105
	4. Nanoparticles containing iodine	105
	5. Our experiments using monochromatic X-rays and tumor spheroids	
	incubated with iodine nanoparticles	107
	6. Experiments with gadolinium-loaded nanoparticles	111
	7. Summary	112
	Acknowledgment	112
	References	112
8.	Carbon ion radiation and clustered DNA double-strand breaks Atsushi Shibata	117
	1. Introduction	117
	2. Clustered DSB formation visualized by high-resolution imaging	119
	3. Repair and mutations after high LET carbon ion irradiation	124
	4. Summary	126
	Acknowledgment	127
	References	127
9.	Damages of DNA in tritiated water	131
	Yuji Hatano, Hiroaki Nakamura, Susumu Fujiwara, Seiki Saito, and	
	Takahiro Kenmotsu	
	1. Introduction	132
	2. Double-strand breaks in tritiated water by β -rays irradiation and other factors	134
	3. Image processing method for single-molecular imaging	138
	4. In silico simulation of DNA damage by tritium β decay	146
	5. Summary and future outlook	149
	References	150