Contents

Prefa	ace	xviii
Ackr	nowledgments	xix
Auth	nor biography	XX
1	Introduction	1-1
	References	1-4
Par	t I Plasma basics	
2	Basic concepts of the motion of charged particles	2-1
2.1	Single particle orbits	2-1
	2.1.1 $B \neq 0$ and $E = 0$	2-2
	2.1.2 E B	2-3
	2.1.3 E ⊥ B	2-3
	2.1.4 Curvature drifts	2-4
	2.1.5 Polarization drifts, $dE/dt \neq 0$	2-5
	2.1.6 Finite Larmor radius corrections	2-7
	2.1.7 Particle drifts when $\nabla B \perp B$	2-9
	2.1.8 Particle motion when $\nabla B \parallel \mathbf{B}$	2-14
2.2	Adiabatic invariants	2-16
2.3	Plasma instabilities explained by single particle motions	2-18
	2.3.1 Gravitational or Rayleigh-Taylor instability	2-19
	2.3.2 Polarization by magnetic field gradient flows	2-20
	2.3.3 Temperature gradient instability in inhomogeneous magnetic fields	2-21
	References	2-22
3	Collisions in magnetized plasmas	3-1
3.1	Basic physics	3-1
	3.1.1 Particle collisions in magnetic fields	3-2
	3.1.2 Collisions in electric and magnetic fields with $E \perp B$	3-3
	3.1.3 Collisions with neutrals	3-8
3.2	Auroral arcs	3-9
	3.2.1 A simple model for an auroral arc	3-12

3.3	Quasi-neutrality	3-15	6.7	Physical picture	6-13
3.4	Plasma diamagnetism	3-16		6.7.1 Model consistency	6-1:
3.5	Diffusion in fully ionized plasmas	3-18		References	6-1
	3.5.1 Diffusion as a random walk	3-21			
3.6	Diffusion in partially ionized plasmas	3-22	7	Resistive drift waves with warm ions	7-
	3.6.1 Short-circuited electric fields	3-23	7.1	Basic equations	7-
	3.6.2 Self-consistent electric fields	3-24	7.2	Equilibrium	7-3
	3.6.3 Unmagnetized plasmas	3-26	7.3	Perturbation	7-
	References	3-27	7.4	Dispersion relation	7-
				7.4.1 Pure drift wave	7-
Par	t II Electrostatic fluid models			7.4.2 Resistive-g mode	7-
				7.4.3 Finite Larmor radius stabilization of flute modes	7-14
4	The basic model for drift waves	4-1		References	7-1:
1.1	Physical picture	4-6			
1.2	Instability of small amplitude drift waves	4-7	8	Electrostatic drift waves with viscosity due to ion-ion collisions	8-
1.3	Spatially varying magnetic fields	4-8	8.1	Dispersion relation	8-2
	References	4-9		8.1.1 Long-λ _{II} limit	8-3
				8.1.2 Amplitude and phase relations	8-:
5	Simplified linear wave analysis	5-1		8.1.3 Short- λ_{\parallel} limit	8-
5.1	Linear dispersion relation	5-2		8.1.4 An apparent paradox	8-
5.2	Physical picture	5-5		References	8-
	5.2.1 The electron velocity	5-6			
	5.2.2 Divergence-free currents	5-7	9	Experimental results	9-
5.3	Waves in rotating systems: Rossby waves	5-8	9.1	The Q-machine	9-
	5.3.1 The β -plane approximation	5-9	9.2	Langmuir probes	9-
	5.3.2 Alternative model for the Rossby waves	5-10		9.2.1 Plane probes	9-
	References	5-12		9.2.2 Time varying conditions	9-1
				9.2.3 Emissive probes	9-1-
5	Resistive drift waves with cold ions	6-1	9.3	Experimental observations of drift waves	9-1:
5.1	Instability of small amplitude electrostatic drift waves	6-1		References	9-1
5.2	Basic equations	6-2			
5.3	Equilibrium	6-5	10	Velocity shear driven instabilities	10-
5.4	Perturbations	6-6	10.1	Shear in ion velocities with $u_i \perp B$	10-
	6.4.1 Electron dynamics	6-6	- 312	10.1.1 Velocity shear instabilities without electron shielding	10-
	6.4.2 Ion dynamics	6-8		10.1.2 Velocity shear instabilities with electron shielding	10-
5.5	Dispersion relation	6-10	10.2	Shear in ion velocities with $u_i \parallel B$	10-
6.6	Amplitude and phase relations	6-12		References	10-1

хi

X

11	Ionospheric conditions	11-1	14.2.4 Kinetic ion model for $(k_y r_L)^2 \le 1$	14-6
11.1	Collisions with neutrals	11-1	14.2.5 High frequencies, $\omega > \Omega_{ci}$	
	Basic equations	11-2	14.2.6 Ion cyclotron drift instability	
	Equilibrium	11-4	References	
	Perturbations	11-5		
	11.4.1 Wave propagation perpendicular to both ∇n_0 and B	11-6	Part IV Linear drift Alfvén waves	
	11.4.2 Propagation in arbitrary directions	11-9		
1.5	Gradient instability	11-11	15 Electromagnetic modes	15-1
	11.5.1 Model equations	11-13	15.1 Simplified linear theory	15-5
1.6	Sound waves for stable conditions	11-14	References	15-10
	References	11-16		
			Part V Weakly nonlinear waves	
12	Inhomogeneous plasma temperatures	12-1		
12.1	Gradients in electron temperature	12-1	16 Classifications of turbulence conditions	16-1
	The low frequency case, $\omega < \Omega_{ci}$	12-2	References	16-6
	12.2.1 Monotonic electron temperature variation	12-5		
	12.2.2 Compact electron temperature variations	12-6	17 Weakly nonlinear waves in homogeneously	17-1
12.3	The high frequency case, $\omega > \Omega_{ci}$	12-7	magnetized plasmas	
12.4	Generalizations for $T_i \neq 0$	12-8	17.1 Flute modes	17-1
12.5	Linear drift waves with inhomogeneous electron temperatures	12-9	17.1.1 Discrete vortex modes	17-2
12.6	Ion temperature gradient modes	12-11	17.1.2 Electron shielding	17-5
	References	12-14	17.1.3 Models with many vortices	17-7
			17.1.4 Hamiltonian property of vortex systems	17-9
13	Waves in a gravitational plasma ionosphere	13-1	17.1.5 Collapse of unshielded vortices	17-12
13.1	Stable and unstable stratifications	13-1	17.2 Steady state solutions with distributed vorticity	17-18
13.2	Wave propagation	13-4	17.2.1 Rotating modons	17-20
	References	13-9	17.2.2 Modons versus solitons	17-20
			References	17-22
Par	t III Linear kinetic models			
			18 Weakly nonlinear electrostatic drift waves	18-1
14	Kinetic models for electrostatic drift waves	14-1	18.1 The Hasegawa–Mima equation	18-1
14.1	Drift kinetic equation	14-1	18.1.1 Linearized Hasegawa-Mima equation	18-5
	Dispersion relations	14-3	18.1.2 Conservation laws	18-5
	14.2.1 Simple model with $T_i = 0$	14-3	18.1.3 Coherent three wave interactions	18-7
	14.2.2 Finite ion inertia	14-4	18.1.4 Stationary solutions	18-8
	14.2.3 Warm ions with $(k_y r_L)^2 \ll 1$	14-5	18.1.5 Drift waves with electron temperature gradients	18-12

xii

18.2	The Hasegawa-Wakatani equations	18-13	20.2	Probability densities	20-9
	18.2.1 Electron dynamics	18-13		20.2.1 Extended model	20-12
	18.2.2 Ion dynamics	18-13		20.2.2 Limit of low pulse densities	20-12
	18.2.3 Hasegawa–Wakatani equations	18-14		20.2.3 Transition to Gaussian distributions	20-13
	18.2.4 Linearized Hasegawa–Wakatani equations	18-15	20.3	Correlation functions	20-16
	18.2.5 Conservation laws for the Hasegawa–Wakatani equations	18-16		20.3.1 Cross-correlation functions	20-19
	18.2.6 Comments on the Hasegawa–Wakatani equations	18-19	20.4	Spectral representation	20-20
	References	18-21	20.5	Statistics of integrals	20-24
			20.6	Consequences of finite record lengths	20-25
Part	VI Randomly varying fields and turbulence			20.6.1 Averages	20-25
				20.6.2 Auto-correlation functions	20-26
19	Elements of statistical analysis	19-1		20.6.3 Triple-correlation functions	20-27
19.1	One variable probabilities	19-3		20.6.4 Cross-correlation functions	20-28
17.1	19.1.1 Generating functions	19-3		20.6.5 Summary	20-29
	19.1.2 Characteristic functions	19-4	20.7	A practical application: model analysis by synthetic data	20-30
	19.1.3 Change of variable	19-5	20.8	Signal modeling	20-32
19.2	Multi-variable probabilities	19-7	20.9	Space-time varying signals	20-35
	19.2.1 Correlation	19-8	20.10	Models with non-overlapping structures	20-39
	19.2.2 Stochastic processes	19-9		References	20-43
	19.2.3 Correlation functions	19-13			
	19.2.4 Conditional averages	19-14	21	Random walk and classical diffusion	21-1
	19.2.5 Time-stationary stochastic processes	19-17	21.1	Diffusion as a random walk	21-1
	19.2.6 Spatial variables	19-27		21.1.1 Random walk with persistence	21-4
	19.2.7 The Wiener–Khinchine theorem	19-30		21.1.2 Forward and backward equations	21-4
	19.2.8 Wavenumber spectra	19-35	21.2	Imposed boundary conditions	21-7
	19.2.9 Reduced wavenumber spectra	19-37		21.2.1 Reflecting barriers	21-9
19.3	Intermittency	19-39		21.2.2 Absorbing barriers	21-10
	19.3.1 Spatial intermittency	19-40		21.2.3 Probable rate of arrival	21-11
	19.3.2 Temporal intermittency	19-41		21.2.4 Probability of returns	21-12
	19.3.3 The Gaussian limit	19-44		21.2.5 Limit of continuous distributions	21-15
	References	19-45	21.3		21-18
				21.3.1 Forward and backward equations	21-18
20	A reference model	20-1		21.3.2 One boundary	21-20
	Campbell's theorem	20-2		21.3.3 Two boundaries	21-22
2 0.1	20.1.1 Proof of Campbell's theorem	20-2		21.3.4 A general method for determining average	21-23
	20.1.2 Extension of Campbell's theorem	20-5		confinement times	
	20.1.2 Excusion of Campoon's dicorem	20-J		References	21-25

xiii

22	Turbulence in two and three spatial dimensions	22-1	23.4	Detection of po
22.1	Viscosity	22-2		23.4.1 Taylor's
	22.1.1 Molecular viscosity	22-2		23.4.2 Experim
	22.1.2 Eddy viscosity	22-7	23.5	Coherent struct
	22.1.3 Heuristic model for a turbulent boundary layer	22-10		23.5.1 Condition
22.2	Energy and enstrophy budgets in two- and three-dimensional turbulence	22-11		23.5.2 Results 23.5.3 Bi-ortho
	22.2.1 Energy budget expressed in wavenumbers	22-11		23.5.4 Comme
	22.2.2 Enstrophy budget	22-13		References
22.3	Reynolds' decomposition	22-14		
22.4	Homogeneous turbulence	22-15	24	Turbulence in
	22.4.1 Constraints of the mean field for homogeneous turbulence	22-16	24.1	Observations
	22.4.2 Equations for the fluctuation averages	22-16	24.2	Laboratory stud
22.5	Structure functions and spectra	22-18		References
	22.5.1 Spatial structure functions: inertial subrange	22-18		
	22.5.2 Wavenumber spectra: inertial subrange	22-19	25	Turbulent diffu
	22.5.3 Viscous spectral subrange	22-22	25.1	Single particle of
	22.5.4 Temporal structure functions	22-24	23.1	25.1.1 Eulerian
	22.5.5 A summary of Heisenberg's derivation	22-25	25.2	Relative diffusion
	22.5.6 Extended models	22-27		25.2.1 Model 6
	22.5.7 Discussions of the universal spectral subrange	22-28	25.3	Models for cent
	22.5.8 Intermittency and the velocity probability densities	22-30	25.4	Analytical expr
	22.5.9 Conditional averages	22-31		25.4.1 Corrsin
	References	22-32	25.5	Elongation of a
			25.6	_
23	Low frequency turbulence in magnetized plasmas	23-1		25.6.1 Turbule
23.1	Homogeneous plasmas	23-1		References
	23.1.1 Two-dimensional random flows generated by	23-4		
	superposition of line vortices		Part	VII Analytical
	23.1.2 Conditional averages	23-6		
23.2	Spectral cascade	23-6	26	Langevin's mo
	23.2.1 Simple argument for the inverse cascade	23-10	26.1	Limitations of
	23.2.2 Enstrophy spectrum	23-12	26.2	Brownian motion
23.3	•	23-14	26.3	Stochastic diffe
	23.3.1 Correlation functions	23-14		References
	23.3.2 Turbulent spectra	23-15		

23.4	Detection of power spectra	23-18
	23.4.1 Taylor's hypothesis	23-18
	23.4.2 Experimental observations of turbulent drift-wave spectra	23-25
23.5	Coherent structures	23-29
	23.5.1 Conditional averaging, experimentally	23-32
	23.5.2 Results from conditional averaging	23-34
	23.5.3 Bi-orthogonal decomposition	23-36
	23.5.4 Comments of structures as a concept	23-38
	References	23-39
24	Turbulence in the ionosphere	24-1
24.1	Observations	24-5
24.2	Laboratory studies	24-8
	References	24-10
25	Tankalan 1860alan	25.1
25	Turbulent diffusion	25-1
25.1	Single particle diffusion	25-1
	25.1.1 Eulerian and Lagrangian mean-square velocities	25-6
25.2	Relative diffusion	25-8
	25.2.1 Model equations for relative diffusion	25-12
25.3	Models for center-of-mass diffusion	25-14
25.4	Analytical expressions	25-14
	25.4.1 Corrsin's hypothesis	25-15
25.5		25-18
25.6	Eulerian and Lagrangian dynamics in shear flows	25-19
	25.6.1 Turbulent diffusion in a linear shear flow	25-20
	References	25-21
Part	VII Analytical tools in turbulence	
26	Langevin's model for Brownian motion	26-1
26.1	Limitations of the Langevin equation	26-3
26.2	Brownian motion with central force	26-4
26.3	Stochastic differential equations	26-6
	References	26-8

27	Markov processes	27-
27.1	Master equation	27-3
27.2 Fokker–Planck equations		27-4
	27.2.1 Transition from discrete to continuous case	27-0
27.3	Correlation functions and spectra	27-9
	27.3.1 Correlation functions for Gaussian Markov processes	27-10
27.4	Relevance for turbulence	27-13
	27.4.1 One test of the Markov assumption in turbulence	27-13
	References	27-18
28	The quasi-normal approximation	28-
	References	28-10
29	The direct interaction approximation	29-
29.1	Introduction to functional differentiation	29-
29.2	Basic equations for a reference model	29-3
29.3	The direct interaction approximation	29-
	29.3.1 DIA by example	29-8
	References	29-13
30	Diagram methods	30-
30.1	Approximate solution by the second order series method	30-0
30.2	Approximate solution by the quasi-normal approximation	30-
30.3	Approximate solution by the DIA	30-8
	References	30-10
App	endices	
	List of symbols used in the analysis of electrostatic drift waves	A -
В	Chemistry of the ionosphere	B -3
C	Collisional cross-sections	C -:
D	Negative temperatures	D -3

E	Dimensional analysis	E-1
F	Summation convention	F-1
G	Physical constants	G-1
Н	Useful vector relations	H-1
I	Differential operators in cylindrical geometry	I-1
J.	Derivations of some special results	J-1

xvi xvii