Contents

Part I Fusion Reactor and Plasma Material Interactions

1	Intro	Introduction					
	1.1	The Organization of This Book	3				
	1.2	Plasma-Material Interactions Caused by Power Load					
		of Radiation and Energetic Particles	5				
	1.3	Energy Conversion from Nuclear to Thermal for Electric					
		Power Generation	7				
	1.4	Brief History of the Development of Plasma-Facing					
		Materials	10				
	1.5	On PMI Studies for a Fusion Reactor	14				
	References						
2	Disc	harges in Current Large Tokamaks	17				
	2.1	Introduction	17				
	2.2	Discharges of Current Large Tokamaks	20				
	2.3	Diagnostics for PMI Research	21				
		2.3.1 Optical Spectroscopy	23				
		2.3.2 Probe Measurements	26				
	2.4	PMI Observed by Proves and Limiter Experiments	29				
	Refe	rences	34				
3	Powe	er Load on Plasma-Facing Materials	37				
	3.1	Introduction	37				
	3.2	Estimation of Power Load and Its Distribution in a Fusion					
		Reactor	38				
	3.3	Steady-State Power Load	41				
	3.4	Transient Power Load	42				
	3.5	Power Load by Neutrons	44				
	3.6	Mitigation of Power Load (Power Exhaust)	45				
	Refe	rences	46				

Contents

Contents

Part II Basic Processes in PMI

4		Responses of Plasma-Facing Surface to Power Load Given					
	by R	adiation and Energetic Particles	49				
	4.1	Introduction	49				
	4.2	Energy Loss Processes of Energetic Particles Injected					
		in a Solid Target	51				
	4.3	Emission of Ions and Neutrals	53				
		4.3.1 Reflection	53				
		4.3.2 Physical Sputtering	56				
		4.3.3 Chemical Sputtering	58				
		4.3.4 Ion-induced Desorption and Radiation-Enhanced					
		Sublimation	61				
	4.4						
		4.4.1 Electron Emission	61				
		4.4.2 Photon Emission	62				
	4.5	Energy Reflection	63				
	4.6	Reemission of Incident Ions	63				
		4.6.1 Reemission of Hydrogen (Fuel)	64				
		4.6.2 Reemission of Inert Gas Atoms	66				
	4.7	Interaction of Released Particles with Photons					
		and Electrons in Boundary Plasmas	68				
	4.8	Summary					
	Refe	rences	71				
_							
5		ion and Deposition, and Their Influences on Plasma	75				
	бепа 5.1	avior (Material Transport in Tokamak)	75				
	5.1 5.2	Introduction	75				
	5.2 5.3	Erosion, Transport, and Deposition	77				
	5.5	Formation of Deposited Layers Made of Eroded Materials	79				
		5.3.1 Carbon Wall	80				
	5 4	5.3.2 Metallic Wall	91				
	5.4	Summary	92				
	Refe	rences	93				
6	Mate	erial Modification by High-Power Load and Its Influence					
	on P	lasma	95				
	6.1	Power Load to PFM	95				
	6.2	Material Response to Power Load and Its Influences					
		on Boundary Plasmas	96				
		6.2.1 Spontaneous Response to Power Load	96				
		6.2.2 Melting and Sublimation	97				
		6.2.3 Hydrogen Recycling	99				
	6.3	Damaging and Degradation of PFM	99				
		6.3.1 Carbon (C)	100				
		6.3.2 Tungsten (W)	102				

		6.3.3	Other PFM Candidates (Be and Li)	109		
		6.3.4	Structure Materials	109		
	6.4	Summa	ary	110		
	Refer	rences .		111		
7 Fundamentals of Hydrogen Recycling						
•	7.1		iction	115 115		
	7.2		I Fuel Flow at Steady-State Burning	116		
	7.3		on of Energetic Hydrogen	118		
	7.4		tion, Reemission, and Retention	120		
	7.5		ation	123		
	7.6		Effects	125		
	7.7		ferm Retention and Trapping	126		
	7.8	-	tion and Modeling	128		
	7.9		ary	128		
	Refer		-	129		
Par	t III	PMI, O	bservations in Present Large Tokamaks and			
		Prospe	cts in a Reactor			
8	рмі	in I ara	e Tokamaks	133		
0	8.1	0	Load	133		
	0.1	8.1.1	Power Load in JET	133		
		8.1.2	Exchange of PFM from Carbon to High Z Metals	136		
		8.1.3	ITER-Like Wall (ILW) in JET	136		
		8.1.4	Power Load by High Energy Particles Produced	150		
		0.1.4	by Fusion	138		
	8.2	Frosio	n and Deposition	138		
	0.2	8.2.1	Carbon Wall (C-Wall)	138		
		8.2.2	Metallic Wall	141		
	8.3			143		
	8.4		ing and Retention of Fuels	145		
	0	8.4.1	Consideration of Fuel Retention Rate	146		
		8.4.2	Recycling	147		
		8.4.3	Long Term Fuel Retention	152		
	8.5	T-Rela	ted Issues on the In-Vessel T Inventory	156		
	8.6		ary	157		
	Refer		·	157		
0						
9			on in a Reactor with Full C-Wall and Full W-Wall	161		
			very	161		
	9.1		action	161		
	9.2		t Estimation of Fuel Retention in ITER	162		
	9.3		uction of Fuel Retention Model in a Fusion Reactor	163		
	9.4	Fuel R	etention in Carbon Materials	164		

		9.4.1	Characteristics of Hydrogen Retention in Carbon		
		,	Materials [11]	164	
		9.4.2	Fuel Retention Build-Up in JT-60U, a Full Carbon		
			Wall Tokamak	167	
		9.4.3	Estimation of Carbon Deposition and Fuel		
			Retention in an ITER Scale Full Carbon Reactor		
			Operated at Around 600 K	171	
	9.5	Fuel Re	etention in Tungsten (W)	173	
		9.5.1	Characteristics of Hydrogen in W	174	
		9.5.2	Fluence Dependence of H Retention in W	177	
	9.6	Compa	rison of Estimated Fuel Retention in a Reactor		
			all C-Wall and W-Wall	179	
	9.7		emoval/Recovery	180	
		9.7.1	Removal/Recovery of T Retained in Carbon		
			Materials	181	
		9.7.2	Removal/Recovery of T Retained in W	182	
	9.8	Summa	ary	183	
	References				
10	Selec	tion of F	Plasma-Facing Materials	187	
	10.1		a for Selection of PFM	187	
	10.2		ns on W Usage as PFM	189	
	10.3		Carbon Materials as PFM	190	
		10.3.1	Character of C as PFM	190	
		10.3.2	Possible Use of C as PFM in a Reactor	191	
	10.4	Liquid	PFM	194	
	10.5	Consid	eration of T Fuel on the Selection of PFM in a Reactor	195	
	10.6	Summa	ary	196	
	Refer	References			
11	Closi	ng Rem	arks	199	
Ind	ex			201	