Part III Cathodic Arc. Theory

15	Catho	de Spot '	Theories. History and Evolution	
	of the	Mechan	isms	545
	15.1	Primary	⁷ Studies	545
		15.1.1	First Hypotheses	545
		15.1.2	Cathode Positive Space Charge and Electron	
			Emission by Electric Field	546
		15.1.3	Mechanism of Thermal Plasma and Ion Current	
			Formation	547
		15.1.4	Mechanism of "Hot Electrons" in a Metallic	
			Cathode	548
		15.1.5	Mechanism of Local Explosion of a Site	
			at the Cathode Surface	551
		15.1.6	Emission Mechanism Due to Cathode Surface	
			Interaction with Excited Atoms	552
	15.2	Mathem	natical Description Using Systematical Approaches	554
		15.2.1	The First Models Using System of Equations	555
		15.2.2	Models Based on Double-Valued Current Density	
			in a Structured Spot	562
	15.3	Further	Spot Modeling Using Cathode Surface Morphology	
		and Ne	ar-Cathode Region	566
		15.3.1	Modeling Using Cathode Traces and Structured	
			Near-Cathode Plasma	567
		15.3.2	Cathode Phenomena in Presence of a Previously	
			Arising Plasma	573
	15.4	Explosi	ve Electron Emission and Cathode Spot Model	579
		15.4.1	Primary Attempt to Use Explosive Electron	
			Emission for Modeling the Cathode Spot	580
		15.4.2	The Possibility of Tip Explosion as a Mechanism	
			of Cathode Spot in a Vacuum Arc	580
		15.4.3	Explosive Electron Emission and Cathode	
			Vaporization Modeling the Cathode Spot	582

xxiv		Сс	ntents
	15.5 15.6	Summary	588 591
	Refere	nces	592
16	Gasdy	namic Theory of Cathode Spot. Mathematically	
	Closed	Formulation	599
	16.1	Brief Overview of Cathodic Arc Specifics Embedded	
		at the Theory	600
	16.2	Gasdynamic Approach Characterizing the Cathode Plasma.	
		Resonance Charge-Exchange Collisions	600
	16.3	Diffusion Model. Weakly Ionized Plasma Approximation	601
	16.4	Diffusion Model. Highly Ionized Plasma Approximation	604
		16.4.1 Overall Estimation of Energetic and Momentum	
		Length by Particle Collisions.	604
		16.4.2 Modeling of the Characteristic Physical Zones	< 0 -
		in the Cathode Spot Plasma	605
		16.4.3 Mathematically Closed System of Equations	606
	16.5	Numerical Investigation of Cathode Spot Parameters	610
		16.5.1 Ion Density Distribution. Plasma Density Gradient	611
		16.5.2 Numerical Study of the Group Spot Parameters	612
		16.5.3 Low-Current Spot Parameters	015
		of Current Rise	620
	16.6	Vacuum Area with Extremely Properties of Cethode Material	020
	10.0	Modified Gesdynamia Models	624
	167	Petroctory Material Model of Virtual Cathode Tungsten	625
	10.7	16.7.1 Model of Low Electron Current Eraction s for	025
		Tungsten	627
		16.7.2 Numerical Study of the Spot Parameters on	027
		Tungsten Cathode	630
	16.8	Vacuum Arcs with Low Melting Materials Mercury	050
	10.0	Cathode	633
		16.8.1 Experimental Data of a Vacuum Arc with Mercury	000
		Cathode	633
		16.8.2 Overview of Early Debatable Hg Spot Models	634
		16.8.3 Double Sheath Model	638
		16.8.4 The System of Equations	639
		16.8.5 Numerical Study of the Mercury Cathode Spot	643
		16.8.6 Analysis of the Spot Simulation at Mercury	
		Cathode	646
	16.9	Film Cathode	650
		16.9.1 Physical Model of Spot Motion on Film Cathode	650
		16.9.2 Calculation Results	652
		16.9.3 Analysis of the Calculation Results	654
		-	

Contents

	Formation
16.11 Refere	Summary
Kineti	c Theory. Mathematical Formulation of a Physically
Closed	Approach
17.1	Cathode Spot and Plasma
17.2	Plasma Flow in a Non-equilibrium Region Adjacent
	to the Cathode Surface
	17.2.1 Overview of the State of the Art
	17.2.2 Specifics of Kinetics of the Cathode Spot Plasma
17.3	Summarizing Conception of the Kinetic Cathode Regions.
	Kinetic Model
17.4	Kinetics of Cathode Vaporization into the Plasma.
	Atom and Electron Knudsen Layers
	17.4.1 Function Distribution of the Vaporized
	and Plasma Particles
	17.4.2 Conservation Laws and the Equations of
	Conservation
	17.4.3 Integration. Total Kinetic Multi-component
	System of Equations
	17.4.4 Specifics at Calculation of Current per Spot
17.5	Region of Cathode Potential Drop. State of Previous
	Studies
17.6	Numerical Investigation of Cathode Spot Parameters
	by Physically Closed Approach
	17.6.1 Kinetic Model. Heavy Particle Approximation
	17.6.2 Spot Initiation During Triggering in a Vacuum
	Arc
	17.6.3 Kinetic Model. Study the Total System of Equations
	at Protrusion Cathode
	17.6.4 Bulk Cathode
17.7	Rules Required for Plasma Flow in Knudsen Layer Ensured
	Cathode Spot Existence
17.8	Cathode Spot Types, Motion, and Voltage Oscillations
	17.8.1 Mechanisms of Different Spot Types
	17.8.2 Mechanisms of Spot Motion and Voltage
	Oscillations
17.9	Requirement of Initial High Voltage in Electrode
	Gap for Vacuum Arc Initiation
17 10	Summary

xxv

X	х	v	1
	~		1

Contents

20

18	Spot	Plasma and	d Plasma Jet	725
	18.1	Plasma J	et Generation and Plasma Expansion.	
		Early Sta	te of the Mechanisms	725
	18.2	Ion Acce	eleration Phenomena in Cathode Plasma. Gradient	
		of Electro	on Pressure	729
		18.2.1	Plasma Polarization and an Electric Field	
]	Formation	729
		18.2.2	Ambipolar Mechanism	730
		18.2.3	Model of Hump Potential	731
	18.3	Plasma J	et Formation by Model of Explosive Electron	
		Emission	ι	733
	18.4	Ion Acce	eleration and Plasma Instabilities	734
	18.5	Gasdyna	mic Approach of Cathode Jet Acceleration	735
		18.5.1	Basic Equations of Plasma Acceleration	735
		18.5.2	Gasdynamic Mechanism. Energy Dissipation	
			in Expanding Plasma	736
		18.5.3	Jet Expansion with Sound Speed as Boundary	
			Condition at the Cathode Side	739
	18.6	Self-cons	sistent Study of Plasma Expansion in the Spot	
		and Jet F	Regions	744
		18.6.1	Spot-Jet Transition and Plasma Flow	744
		18.6.2	System of Equations for Cathode Plasma Flow	745
		18.6.3	Plasma Jet and Boundary Conditions	747
	18.7	Self-cons	sistent Spot-Jet Plasma Expansion. Numerical	
		Simulatio	on	748
	18.8	Anomalo	ous Plasma Jet Acceleration in High-Current Pulse	
		Arcs		753
		18.8.1	State of the General Problem of Arcs with High	
			Rate of Current Rise	753
		18.8.2	Physical Model and Mathematical Formulation	753
		18.8.3	Calculating Results	756
		18.8.4	Commenting of the Results with Large dI/dt	759
	18.9	Summar	y	760
	Refer	ences		763
19	Cath	ode Spot N	lotion in Magnetic Fields	769
	19.1	Cathode	Spot Motion in a Transverse Magnetic Field	769
	••••	19.1.1	Retrograde Motion. Review of the Theoretical	
			Works	770
	19.2	Spot Bel	navior and Impeded Plasma Flow Under Magnetic	
	17.0	Pressure		795
		19.2.1	The Physical Basics of Impeded Spot Plasma Flow	
			and Magnetic Pressure Action	796
		19.2.2	Mathematics of Current–Magnetic Field Interaction	
			in the Cathode Spot	796
				, , , , ,

19.3	Cathode 19.3.1	e Spot Grouping in a Magnetic Field	798
		Description of Spot Grouping	798
	19.3.2	Calculating Results of Spot Grouping	801
19.4	Model	of Retrograde Spot Motion. Physics and Mathematical	
	Descrip	ption	801
	19.4.1	Retrograde Spot Motion of a Vacuum Arc	802
	19.4.2	Retrograde Spot Motion in the Presence	
		of a Surrounding Gas Pressure	804
	19.4.3	Calculating Results of Spot Motion in an Applied	
		Magnetic Field	805
19.5	Cathod	e Spot Motion in Oblique Magnetic Field. Acute	
	Angle I	Effect	807
	19.5.1	Previous Hypotheses	807
	19.5.2	Physical and Mathematical Model of Spot Drift	
		Due to the Acute Angle Effect	809
	19.5.3	Calculating Results of Spot Motion in an Oblique	
	_	Magnetic Field	813
19.6	Spot Sp	plitting in an Oblique Magnetic Field	815
	19.6.1	The Current Per Spot Arising Under Oblique	
		Magnetic Field	815
	19.6.2	Model of Spot Splitting	816
10 7	19.6.3	Calculating Results of Spot Splitting	818
19.7 D.f	Summa	ury	819
Refere	nces		823
Theor	etical Stu	udy of Anode Spot. Evolution of the Anode	
Region	n Theory	y	829
20.1	Review	v of the Anode Region Theory	829
	20.1.1	Modeling of the Anode Spot at Early Period	
		for Arcs at Atmosphere Pressure	830
	20.1.2	Anode Spot Formation in Vacuum Arcs	842
	20.1.3	State of Developed Models of Anode Spot in Low	
		Pressure and Vacuum Arcs	855
	20.1.4	Summary of the Previous Anode Spot Models	860
20.2	Anode	Region Modeling. Kinetics of Anode Vaporization	
	and Pla	Isma Flow	862
20.3	Overall	Characterization of the Anode Spot and Anode	
	Plasma	Region	862
	20.3.1	Kinetic Model of the Anode Region in a Vacuum	
		Arc	865
	20.3.2	Equations of Conservation	866
	20.3.3	System of Kinetic Equations for Anode Plasma	a
		Flow	867

xxvii

xxviii

20.4	System of Gasdynamic Equation for an Anode Spot in a
	Vacuum Arc
20.5	Numerical Investigation of Anode Spot Parameters
	20.5.1 Preliminary Analysis Based on Simple Approach.
	Copper Anode
	20.5.2 Extended Approach. Copper Anode
20.6	Extended Approach. Graphite Anode
	20.6.1 Concluding Remarks
DC	

Part IV Applications

21	Unipo	lar Arcs.	Experimental and Theoretical Study	895
	21.1	Experimental Study		
		21.1.1	Unipolar Arcs on the Metal Elements in Fusion	
			Devices	896
		21.1.2	Unipolar Arcs on a Nanostructured Surfaces	
			in Tokamaks	903
		21.1.3	Film Cathode Spot in a Fusion Devices	908
	21.2	Theoreti	cal Study of Arcing Phenomena in a Fusion	
		Devices		911
		21.2.1	First Ideas of Unipolar Current Continuity	
			in an Arc	912
		21.2.2	Developed Mechanisms of Unipolar Arc Initiation	914
		21.2.3	The Role of Adjacent Plasma and Surface Relief	
			in Spot Development of a Unipolar Arc	920
		21.2.4	Explosive Models of Unipolar Arcs in Fusion	
			Devices	924
		21.2.5	Briefly Description of the Mechanism for Arcing	
			at Film Cathode	925
	21.3	Summar	y	926
	Refere	nces		928
22	Vacuu	m Arc Pl	lasma Sources. Thin Film Deposition	933
	22.1	Brief Ov	verview of the Deposition Techniques	934
	22.1	22.1.1	Advanced Techniques Used Extensive for Thin	201
		22.1.1	Film Deposition	934
		22.1.2	Vacuum Arc Deposition (VAD)	935
	22.2	Arc Mo	de with Refractory Anode, Physical Phenomena	938
		22.2.1	Hot Refractory Anode Vacuum Arc (HRAVA)	938
		22.2.2	Vacuum Arc with Black Body Assembly	100
			(VABBA)	940
	22.3	Experim	ental Setup. Methodology	940
	22.4	Theory a	and Mechanism of an Arc with Refractory	
		Anode.	Mathematical Description	945

		22.4.1 Mathematical Formulation of the Thermal Model 22.4.2 Incoming Heat Flux and Plasma Parameters	946 947
		22.4.3 Method of Solution and Results of Calculation.	949
	22.5	Application of Arcs with Refractory Anode for Thin Films	
		Coatings	952
		22.5.1 Deposition of Volatile Materials	952
		22.5.2 Deposition of Intermediate Materials	967
		22.5.3 Advances Deposition of Refractory Materials	
		with Vacuum Arcs Refractory Anode	983
	22.6	Comparison of Vacuum Arc Deposition System	
		with Other Deposition Systems	988
		22.6.1 Vacuum Arc Deposition System Compared	
		to Non-arc Deposition Systems	988
		22.6.2 Comparison with Other Vacuum Arc-Based	
		Deposition Systems	989
	22.7	Summary	992
	Refere	nces	994
23	Vacuu	um-Arc Modeling with Respect to a Space Microthruster	
	Applic	cation	1003
	23.1	General Problem and Main Characteristics of the Thruster	
		Efficiency	1003
	23.2	Vacuum-Arc Plasma Characteristics as a Thrust Source	1005
	23.3	Microplasma Generation in a Microscale Short Vacuum	
		Arc	1007
		23.3.1 Phenomena in Arcs with Small Electrode Gaps	1007
		23.3.2 Short Vacuum Arc Model	1008
		23.3.3 Calculation Results. Dependence on Gap Distance	1010
		23.3.4 Calculation Results. Dependence on Cathode	
		Potential Drop	1012
	23.4	Cathodic Vacuum Arc Study with Respect to a Plasma	
		Thruster Application	1015
		23.4.1 Model and Assumptions	1016
		23.4.2 Simulation and Results	1017
	23.5	Summary	1020
	Refere	nces	1023
24	Applic	cation of Cathode Spot Theory to Laser Metal Interaction	
	and L	aser Plasma Generation	1027
	24.1	Physics of Laser Plasma Generation	1027
	24.2	Review of Experimental Results	1028
	24.3	Overview of Theoretical Approaches of Laser-Target	
		Interaction	1034
	24.4	Near-Target Phenomena by Moderate Power Laser	
		Irradiation	1037

Content	s
---------	---

		24.4.1 Target Vaporization	
		24.4.2 Breakdown of Neutral Vapor	
		24.4.3 Near-Target Electrical Sheath	
		24.4.4 Electron Emission from Hot Area of the Target 1039	
		24.4.5 Plasma Heating. Electron Temperature 1039	
		24.4.6 Plasma Acceleration Mechanism 1040	
	24.5	Self-consistent Model and System of Equations of Laser	
		Irradiation	
	24.6	Calculations of Plasma and Target Parameters	
		24.6.1 Results of Calculations for Copper Target	
		24.6.2 Results of Calculations for Silver Target 1052	
		24.6.3 Calculation for Al, Ni, and Ti Targets and	
		Comparison with the Experiment	
	24.7	Feature of Laser Irradiation Converting into the Plasma	
		Energy and Target Shielding 1056	
	24.8	Feature of Expanding Laser Plasma Flow and Jet	
		Acceleration	
	24.9	Summary	
	Referen	nces	
25	Annlic	ation of Cathode Spot Theory for Arcs Formed in	
	Technical Devices 1067		
	25.1 Electrode Problem at a Wall Under Plasma Flow		
		Hot Boundary Laver	
	25.2	Hot Ceramic Electrodes. Overheating Instability	
		25.2.1 Transient Process	
		25.2.2 Stability of Arcing and Constriction Conditions 1069	
		25.2.3 Double Layer Approximation	
		25.2.4 Thermal and Volt–Current Characteristics	
		for an Electrode-Plasma System	
	25.3	Current Constriction Regime. Arcing at Spot Mode	
		Under Plasma Flow with a Dopant	
		25.3.1 The Subject and Specific Condition	
		of a Discharge	
		25.3.2 Physical Model of Cathode Spot Arising	
		Under Dopant Plasma Flow	
		25.3.3 Specifics of System of Equations. Calculations 1083	
	25.4	Arc Column at Atmospheric Gas Pressure	
		25.4.1 Analysis of the Existing Mathematical Approaches	
		Based on "Channel Model" 1087	
		25.4.2 Mathematical Formulation Using Temperature	
		Dependent Electrical Conductivity in the All	
		Discharge Tube 1089	
		25.4.3 Results of Calculations 1092	

25.5 25.6	Discharges with "Anomalous" Electron Emission Current 1095 High-Current Arc Moving Between Parallel Electrodes.	
	Rail Gun	
	25.6.1 Physics of High-Current Vacuum Arc in MPA.	
	Plasma Properties 1099	
	25.6.2 Model and System of Equations 1100	
	25.6.3 Numerical results 1103	
	25.6.4 Magneto-Plasma Acceleration of a Body.	
	Equations and Calculation	
25.7	Summary	
Refere	nces	
Conclusion		
Appendix:	Constants of Metals Related to Cathode Materials	
	Used in Vacuum Arcs 1117	
Index		