Contents

1	What Is NONLINEAR?						
1.1 Nature and Science			and Science	1			
		1.1.1	Natura Vexata	1			
		1.1.2	Syndrome	4			
		1.1.3	Déconstruction of Linear Theory	5			
	1.2	The Sc	ale of Phenomenon / Theory with Scale	6			
		1.2.1	The Role of <i>Scale</i> in Scientific Revolutions	6			
		1.2.2	The Mathematical Recognition of <i>Scale</i>	8			
	1.3	The Te	rritory of Linear Theory	10			
		1.3.1	Linear Space — The Horizon of Mathematical Science	10			
		1.3.2	The Mathematical Definition of Vectors	12			
		1.3.3	Graphs—Geometric Representation of Laws	15			
		1.3.4	Exponential Law	20			
			earity—Phenomenology and Structures	24			
		1.4.1	Nonlinear Phenomena	24			
		1.4.2	The Typology of Distortion	25			
		1.4.3	Nonlinearity Emerging in Small Scale— <i>Singularity</i>	27			
		1.4.4	Nonlinearity Escaping from Linearity— <i>Criticality</i>	29			
		1.4.5	Bifurcation (Polyvalency) and Discontinuity	31			
	Note	s		33			
	Prob	lems		41			
	Solu	Solutions					
	Refe	References		43			
				45			
2							
	2.1 The Order of Nature—A Geometric View		45				
		2.1.1	Galileo's Natural Philosophy	45			
		2.1.2	Geometric Description of Events	46			
		2.1.3	Universality Discovered by Newton	48			
	2.2		on—The Mathematical Representation of Order	52			
		2.2.1	Motion and Function	52			
		2.2.2	Nonlinear Regime	54			

х

C	ont	er	its

Refe	erences.	
Inte	ractions	of Micro and Macro Hierarchies
4.1	Structu	re and Scale Hierarchy
	4.1.1	Crossing-Over Hierarchies
	4.1.2	Connection of Scale Hierarchies—Structure
4.2	Topolo	pgy—A System of Differences
	4.2.1	The Topology of Geometry
	4.2.2	Scale Hierarchy and Topology
	4.2.3	Fractals—Aggregates of Scales
4.3	cale of Event / The Scale of Law	
	4.3.1	Scaling and Representation
	4.3.2	Scale Separation
	4.3.3	Spontaneous Selection of Scale by Nonlinearity
	4.3.4	Singularity—Ideal Limit of Scale-Invariant Structure
4.4		ctions of Scale Hierarchies
	4.4.1	Complexity—Structures with Multiple Aspects
	4.4.2	Singular Perturbation
	4.4.3	Collaborations of Nonlinearity and Singular Perturbation
	4.4.4	Localized Structures in Space–Time
	4.4.5	Irreducible Couplings of Multi-Scales
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
Solu	tions	

2.3 Decomposition—Elucidation of Order 58					
2.3.1 The Mathematical Representation of Causality 58					
2.3.2 Exponential Law—A Basic Form of <i>Group</i>					
2.3.3 <i>Resonance</i> —Undecomposable Motion					
2.3.4 Nonlinear Dynamics—An Infinite Chain of Interacting					
Modes					
2.3.5 Chaos—Motion in the Infinite Period					
2.3.6 Separability/Inseparability					
2.4 Invariance in Dynamics					
2.4.1 Constants of Motion					
2.4.2 <i>Chaos</i> —True Evolution					
2.4.3 Collective Order 81					
2.4.4 Complete Solution—The Frame of Space					
Embodying Order 83					
2.4.5 The Difficulty of <i>Infinity</i> 85					
2.5 Symmetry and Conservation Law					
2.5.1 Symmetry in Dynamical System					
2.5.2 The Deep Structure of Dynamical System					
2.5.3 The Translation of Motion and Non-motion					
2.5.4 Chaos—The Impossibility of Decomposition					
Notes					
Problems					
Solutions					
References					

The		Challenge of Macro-Systems			
	3.1	The Di	fficulty of Prediction111		
		3.1.1	Chaos in Phenomenological Recognition		
		3.1.2	Stability		
		3.1.3	Attractors		
		3.1.4	Stability and Integrability 119		
	3.2	Rando	mness as Hypothetical Simplicity 121		
		3.2.1	Stochastic Process		
		3.2.2	Representation of Motion by Transition Probability 123		
		3.2.3	H-Theorem		
		3.2.4	Statistical Equilibrium 127		
		3.2.5	Statistically Plausible Particular Solutions		
	3.3	Collect	tive Phenomena		
		3.3.1	Nonequilibrium and Macroscopic Dynamics		
		3.3.2	A Model of Collective Motion 133		
		3.3.3	A Statistical Model of Collisions		
	Note	s			
	Prob	lems			