Contents

1	Intro	duction	1
2	Charge-Exchange Technologies		5
	2.1	Features of Charge Exchange for the Production and Use	
		of Accelerated Particles	5
	2.2	Regularities in the Redistribution in Mass and Charge	
		of Accelerated Particles	7
	2.3	Charge-Exchange Tandem Accelerators	11
	2.4	Super-Collimated Beam Production	13
	2.5	Charge-Exchange Extraction of Particles from Accelerators	13
	2.6	Charge-Exchange Distribution of Accelerated Particle Beams	14
	2.7	Charge-Exchange Injection into Accelerators	
		and Accumulator Rings	14
	2.8	Charge-Exchange Injection into Magnetic Plasma Traps	27
	2.9	Summary	29
3	Methods of Negative Ion Production		31
	3.1	Formation and Destruction of Negative Ions	32
	3.2	Charge-Exchange Methods for Negative Ion Production	34
	3.3	Charge-Exchange Negative Ion Sources.	37
	3.4	Charge-Exchange Polarized Negative Ion Sources	41
	3.5	Cold Muonium Negative Ion Production	45
	3.6	Negative Ion Beam Formation from Gaseous Plasmas	47
	3.7	Formation and Destruction of Negative Ions	
		in a Gaseous Plasma	48
	3.8	Beam Formation from Negative Ions Generated	
		in the Plasma Volume	53
	3.9	Plasma Volume Sources of Negative Ions.	54
	3.10	Thermionic Production of Negative Ion Beams	66
	3.11	Secondary Emission (Sputtering) Production	
		of Negative Ion Beams	68
	3.12	Summary	72

х

4	Surfa	ce Plasma Production of Negative Ions	73
	4.1	Early Experiments on Negative Ion Production	
		in Cesiated Discharges	73
	4.2	Studies of Negative Ion Emission from Hydrogen	
		Plasma with Added Cesium	83
	4.3	Energy Spectra of H ⁻ Ions in Surface Plasma Sources	94
	4.4	Advanced Design Options for Surface Plasma Sources	99
	4.5	Emissive Properties of Electrodes in Surface Plasma	
		Source Discharges.	107
	4.6	Plasma Parameters and Negative Ion Destruction	
		in the Plasma	115
	4.7	Cesium in Surface Plasma Sources.	120
	4.8	Physical Basis of the Surface Plasma Method	
		of Negative Ion Production	129
	4.9	Regularities in the Formation of Reflected, Sputtered,	
		and Evaporated Particles	131
	4.10	Electron Capture to the Electron Affinity Levels	
		for Sputtered, Reflected, and Evaporated Particles.	133
	4.11	Implementation of Surface Plasma Production	100
		of Negative Ion Beams	142
		č	
5		ce Plasma Negative Ion Sources	155
	5.1	Surface Plasma H ⁻ Ion Sources for Accelerators	155
	5.2	Design of Surface Plasma H ⁻ Ion Sources for Accelerators	157
	5.3	Formation of H ⁻ Ion Beams in Surface Plasma Sources	
		for Accelerators.	162
	5.4	Surface Plasma Sources with Penning Discharge	
		for Microlithography	167
	5.5	Semiplanotron, Geometric Focusing	168
	5.6	Semiplanotrons for Accelerators.	176
	5.7	Semiplanotrons with Spherical Focusing	
		for Continuous Operation	177
	5.8	Compact Surface Plasma Sources for Heavy Negative	
		Ion Production	184
	5.9	Development of Surface Plasma Sources World-Wide	187
		5.9.1 Surface Plasma Sources at Los Alamos	
		National Laboratory	192
		5.9.2 Surface Plasma Sources at Rutherford-Appleton	
		Laboratory	198
		5.9.3 Surface Plasma Sources at Oak Ridge	
		National Laboratory	202
		5.9.4 CW Surface Plasma Sources at the Budker Institute,	
		Novosibirsk	203
	5.10	Large Volume Surface Plasma Sources with Self-Extraction	203
	, , , , , , , , , , , , , , , , , , , ,		
	5.10	Large Volume Surface Plasma Sources for Accelerators	207

	5.12	Large Volume Surface Plasma Sources for Heavy			
		Ion Production	214		
	5.13	Surface Plasma Sources for Intense Neutral Beam			
		Production for Controlled Fusion	217		
	5.14	RF Surface Plasma Sources for ITER.	221		
	5.15	Neutral Beam Injector with RF SPS Development			
		at Novosibirsk	228		
	5.16	RF Surface Plasma Sources for Spallation Neutron Sources	237		
	5.17	Carbon Films in RF Surface Plasma Sources with Cesiation	245		
	5.18	Poisoning and Recovery of Converter Surfaces	250		
	5.19	RF Surface Plasma Sources with External Antenna	252		
	5.20	RF Surface Plasma Sources with Solenoidal Magnetic Field	256		
	5.21	Testing RF Surface Plasma Sources with Saddle Antenna			
		and Magnetic Field	267		
	5.22	Estimation of H ⁻ Ion Beam Generation Efficiency	274		
	5.23	RF Surface Plasma Source Operation in Continuous Mode	276		
	5.24	RF Surface Plasma Sources at CERN	280		
	5.25	Surface Plasma Sources at J-PARC, Japan	283		
	5.26	Surface Plasma Sources for Low Energy Neutrals	289		
6	Trans	port of High Brightness Negative Ion Beams	295		
7	Gene	ral Remarks on Surface Plasma Sources	309		
	7.1	Conclusion	318		
Re	References				
Ter Jan					
Index					

хi