CONTENTS

NOTATION INTRODUCTION

xiii xv

PART 1. GENERAL PRINCIPLES

I. THE GROUNDWORK OF CRYSTAL PHYSICS

1.	Scalars, vectors and tensors of the second rank	3
2.	Transformations	8
3.	Definition of a tensor	14
4.	The representation quadric	16
5.	The effect of crystal symmetry on crystal properties	20
6.	The magnitude of a property in a given direction	24
7.	Geometrical properties of the representation quadric	26
Su	mmary	30

II. TRANSFORMATIONS AND SECOND-RANK TENSORS: FURTHER DEVELOPMENTS

2. Vector product. Polar and axial vectors	38
3. The principal axes of a tensor	41
4. The Mohr circle construction	43
5. The magnitude ellipsoid	47
Summary	4 8

PART 2. EQUILIBRIUM PROPERTIES

III. PARAMAGNETIC AND DIAMAGNETIC SUSCEPTIBILITY

1. General relations	53
2. The energy associated with a magnetized crystal	57
3. Couples and forces	60
4. The susceptibility of a powder	66
Summary	

IV. ELECTRIC POLARIZATION

I. General relations	68
2. Differences between electric polarization and magnetization	70
3. The relations between D, E and P in a parallel plate condenser	72
4. The energy of a polarized crystal	74
5. The force and couple on a crystal in an electric field	74
6. The electrostatic field in a homogeneous anisotropic dielectric	75
Summary of §§ 1-6	77

х

7. Pyroelectricity	78
8. Ferroelectricity	80
Summary of §§ 7, 8	81
V. THE STRESS TENSOR	
1. The notion of stress	82
2. Proof that the σ_{ij} form a tensor	87
3. The stress quadric	89
4. Special forms of the stress tensor	90
5. Difference between the stress tensor and tensors representing	
crystal properties	91
Summary	92
VI. THE STRAIN TENSOR AND THERMAL EXPANSION	
1. One-dimensional strain	93
2. Two-dimensional strain	94
3. Three-dimensional strain	98
4. Strain and crystal symmetry	104
Summary of §§ 1-4	105

Summary of § 5

5. Thermal expansion

VII. PIEZOELECTRICITY. THIRD-RANK TENSORS

1. The direct piezoelectric effect	110
2. Reduction in the number of independent moduli. Matrix notation	n 113
3. The converse piezoelectric effect	115
4. Reduction in the number of independent moduli by cryst symmetry	al 116
5. Results for all the crystal classes	122
6. Representation surfaces	126
Summary	130

VIII. ELASTICITY. FOURTH-RANK TENSORS 1 17. . 1. . 1.

1. Hooke's law	131
2. The matrix notation	134
3. The energy of a strained crystal	136
4. The effect of crystal symmetry	137
5. Representation surfaces and Young's Modulus	143
6. Volume and linear compressibility of a crystal	145
7. Relations between the compliances and the stiffnesses	147
8. Numerical values of the elastic coefficients	147
Summary	148

CONTENTS

IX.

4. Electrical conductivity

XII. THERMOELECTRICITY

Summary

Summary

5. The reciprocal relation $k_{ij} = k_{ji}$

3. Thermoelectric effects in crystals

6. Thermodynamical arguments. Onsager's Principle

2. Thermoelectric effects in isotropic continuous media

1. Thermoelectric effects in isotropic conductors

106

109

IX.	THE MATRIX METHOD	
	1. The matrix and tensor notations	150
	2. Matrix algebra	150
	3. Crystal properties in matrix notation	153
	4. Two derived matrices	155
	5. The magnitude of a second-rank tensor property in an arbitrary direction	157
	6. Rotation of axes	157
	7. Examples of matrix calculations	158
	Summary	168
Χ.	THERMODYNAMICS OF EQUILIBRIUM PROPERTIES CRYSTALS	OF
	1. The thermal, electrical and mechanical properties of a crystal	170
	2. Thermodynamics of thermoelastic behaviour	173
	3. Thermodynamics of thermal, electrical and elastic properties	178
	4. Relations between coefficients measured under different conditions	183
	Summary	191
	PART 3. TRANSPORT PROPERTIES	
XI.	THERMAL AND ELECTRICAL CONDUCTIVITY	
	1. The thermal conductivity and resistivity tensors	195
	2. Two special cases of steady heat flow	197
	3. Steady-state heat flow in general	200

PART 4. CRYSTAL OPTICS

XIII. NATURAL AND ARTIFICIAL DOUBLE REFRACTION. SECOND-ORDER EFFECTS

1. Double refraction	235
2. The electro-optical and photoelastic effects	241
3. Second-order effects in general	254
Summary	258

204

205

207

212

215

218

224

230

XIV. OPTICAL ACTIVITY

1. Introduction	260
2. Optical activity and birefringence	263
3. The principle of superposition	266
4. The size of the effect	268
5. The tensor character of $[g_{ij}]$	269
6. The effect of crystal symmetry on the g_{ij}	270
Summary	273

APPENDIXES

A .	Summary of vector notation and formulae	275
B.	The symmetry of crystals and conventions for the choice of axes	276
С.	Summary of crystal properties	289
D.	The number of independent coefficients in the 32 crystal classes	293
E.	Matrices for equilibrium properties in the 32 crystal classes	295
F.	Magnetic and electrical energy	302
G.	The difference between the clamped and free isothermal permittivities	304
H.	Proof of the indicatrix properties from Maxwell's equations	305
BI	BLIOGRAPHY	310
st	PPLEMENTARY REFERENCES AND NOTES (1985)	313
sc	LUTIONS TO THE EXERCISES WITH NOTES	320
IN	DEX OF NAMES	323
IN	IDEX OF SUBJECTS	324

xii