Contents

Par		High Conductivity Channels for a Laser Lightning-Protection System	
1	Elec	tric-Discharge Guiding by a Continuous Laser-Induced	
	Spa	rk	3
	1.1	Introduction	3
	1.2	Experimental Setup	4
	1.3	Experimental Results and Discussion	6
	1.4	Conclusions	13
	Refe	erences	14
2	Experimental Simulation of a Laser Lightning-Protection		
	Syst	em	15
	2.1	Introduction	15
	2.2	Experimental Setup	16
	2.3	Experimental Results and Analysis	17
	2.4	Conclusions	22
	Refe	erences	23
3	Lightning and Ecology of Atmosphere		25
	3.1	Introduction	25
	3.2	Power of Lightning	25
	3.3		27
	3.4	Lightning in the Natural Capacitor "Cloud-Ionosphere"	32
	3.5	Orbital Electrical Socket	34
	3.6	Conclusions	36
	Refe	erence	36

Part II

39

39

40

42

45

53

53

55

55

55

63

63

65

65

68

71

72

79

79

82

82

83

83

86

87 89

89

89

93

93

95

95

95

98

99

Contents

Channels Realization Interaction of an OPD with a Gas 4 4.1 4.2 Conditions of Stable SW Generation Experimental Setup 4.3 Combination of OPD-Generated SW 4.4 4.5 References Mechanism of SW Merging in a LJE 5 5.1 Efficient Laser Jet Engine 5.2 5.3 LJE Based on the Resonance Merging of SW 6 6.1 Parameters of a Spark in the LJE. 6.2 Mechanism of the Resonance Merging of SW in a LJE..... 6.3 Spherical OPD. 6.4 LJE Parameters in the Monoreflector Scheme 6.5 6.6 Array Reflector LJE Based on the Resonance Merging of SW 6.7 6.7.1 Mechanism and Scheme of Acceleration Advantages of the Method 6.7.2 The LJE Parameters (Initial Data).... 6.7.3 6.8 References LJE: The Action of SW at Low Laser Pulse Repetition Rates 7 7.1 LJE Parameters 7.2 Conclusions 7.3 Simulation of High Conductivity Channels in Space 8 8.1 Lasers for Producing Sparks in the Atmosphere..... 8.2 Use of a Pulse-Periodic Laser 8.3 Formation of a Current-Conducting Channel According 8.4 to the "Impulsar" Program Formation of an Electrical Breakdown in the Channel Formed 8.5 by an Exploding Thin Wire 100 Formation of Electrical Discharges in a Plasma Channel 8.6 Produced by a Solid-State Laser 108

«Impulsar» as a Background for High Conductivity

	8.7	Experimental Results	112		
	8.8 Refe	Conclusions	113 114		
9	High	Conductivity Channel Expansion Rate Measurements	117		
	9.1	Introduction	117		
	9.2	Formation of Controlled Electrical Discharges in a Channel			
		Produced by the Explosion of a Wire	120		
	9.3	Conclusions	126		
	Refe	rences	126		
10	«Impulsar»: New Application for High Power/Energy High				
	Repe	tition Rate Pulse-Periodic Lasers	129		
	10.1	Introduction	129		
	10.2	Experimental Setup	130		
	10.3	Results of Measurements	133		
		10.3.1 Control Measurements	133		
		10.3.2 Stationary Regime	134		
		10.3.3 Pulsed Regime	136		
	10.4	The Impact of Thermal Action	138		
	10.5	The Dynamic Resonance Loads	141		
	10.6	Matrix of Reflectors	142		
	10.7	Super Long Conductive Channel for Energy Transfer	143		
	10.8	Conclusions	145		
	Refer	rences	145		
Part	III	Lasers and Laser Components for High Conductivity			
		Channels Implementation			
11	Lase	r Power Source for Wireless Power Transmission			
	in Sp	ace	149		
	11.1	Introduction	149		
	11.2	High Conductivity Channel Formation	152		
	11.3	High-Frequency Pulse-Periodic Solid-State and Gas-Dynamic Lasers	153		
	11.4	Pulse-Periodic HF/DF and COIL Lasers	157		
	11.5	Bright Future—High Power/Energy Mono-Module			
		Disk Laser	158		
	11.6	Conclusions	161		
	Refer	ences	161		
12	High Power/Energy High Repetition Rate Lasers				
	12.1	Introduction	163		
	12.2	Comparison of CW and P-P Regimes of Operation	163		
	12.3	Solid-State Lasers	165		
	12.4	High-Frequency Intra-Cavity Loss Modulation	166		

	12.5 Carbon Dioxide Lasers	166	
	12.6 High-Frequency P-P Regime	167	
	12.7 Conclusions	169	
	References		
13	High Power/Energy Lasers and New Applications	171	
	13.1 Introduction	171	
	13.2 Lasers for Laser Jet Engine Development	171	
	13.3 Long Conducting Channel and New Set of Applications	174	
	13.4 Lightning Control	178	
	13.5 Manifestation of Atmospheric Electricity Existence	180	
	13.6 Sprites and Jets Investigation	184	
	13.7 Conclusions	186	
	References	186	
14	High Power/Energy Disk Lasers	189	
	14.1 Introduction	189	
	14.2 Disk and Fiber Lasers	190	
	14.3 Design and Physical Foundations of Disk Laser Operation	191	
	14.4 Laws of Scaling of Disk Lasers	192	
	14.5 Regenerative Amplification of Pulses	195	
	14.6 Prospects for Scaling the Power/Energy of Disk Lasers	196	
	14.7 Conclusions	198	
	References	198	
15	High Power/Energy Molecular Lasers	201	
	15.1 Introduction	201	
	15.2 Physical Model of SSVD Formation	202	
	15.3 Experiments	206	
	15.4 High Power/Energy HF (DF) Lasers	214	
	15.5 Discussion	226	
	15.6 Conclusions	232	
	References	234	
16	High Power/Energy HF (DF) Lasers	237	
	16.1 Introduction	237	
	16.2 A New Form of SSVD	238	
	16.3 Non-chain HF (DF) Lasers Pumped by SIVD	249	
	16.4 Wide Aperture Non-chain HF (DF) Lasers	253	
	16.5 Conclusions	253	
	References	255	
17	High Power/Energy Optics	257	
	17.1 Introduction	257	
	17.2 Static POEs Based on Monolithic Materials	258	
	17.2.1 Thermal Stress State of a Solid Body Exposed to		
	Laser Radiation	259	

		17.2.2 Continuous-Wave Irradiation	262			
		17.2.3 Pulsed Irradiation	267			
		17.2.4 Repetitively Pulsed Irradiation	269			
		17.2.5 Criteria for the Optical Surface Stability	271			
		17.2.6 Irreversible Changes in the Optical Surface	274			
	17.3	Static OPEs Based on Materials with a Porous Structure	275			
		17.3.1 Temperature Field in Porous Structures Under				
		Convective Cooling	275			
		17.3.2 Convective Heat Transfer in a Porous Structure	277			
		17.3.3 Hydrodynamics of a Single-Phase Flow in a Porous				
		Structure	277			
		17.3.4 Effect of the Coolant Inlet and Outlet Conditions on				
		the Hydraulic Characteristics of the POE	279			
		17.3.5 Thermal Conductivity of Porous Structures in POEs	280			
		17.3.6 Thermal Deformation of the Optical Surface	280			
		17.3.7 Liquid-Metal Coolants in POEs Based on Porous				
		Structures	282			
	17.4	Adaptive POEs and Optical Systems Based on Them	286			
	17.5	Large POEs Based on Multilayer Honeycomb Structures	288			
	17.6	Large POEs Based on Composite Materials	290			
	17.7	High Power/Energy Optics and Its New Applications	293			
		17.7.1 Cooling of Laser Diode Assemblies	293			
		17.7.2 New Generation of High Power/Energy Optics Based				
		on Silicon Carbide	294			
	17.8	Conclusions	295			
	Refer	rences	295			
10						
18		Technologies for High Power/Energy Lasers Based	200			
		D-Structures, New Technologies and Materials	299			
	18.1	Introduction	299			
	18.2	New Approaches for High Power/Energy	202			
	10.2	Lasers Development	302			
	18.3	Laser Systems of Propellant Ignition	303			
	18.4	New SiC-Mirror Manufacturing Technology Capabilities	310			
	18.5	Conclusions	315			
	Refer	rences	315			
Cor	Conclusions					
Ind	Index					