Contents

1	Introduction	1
	References	5

Part I Background Material

2	Electi	romagnetism	9		
	2.1	Maxwell's Equations	9		
	2.2	Unit System	11		
	2.3	Constitutive Relations	13		
	2.4	Potentials	16		
	2.5	Boundary Conditions	19		
	2.6	The Fresnel Equations	23		
		2.6.1 Reflection and Transmission for Normal			
			23		
		2.6.2 Oblique Incidence	25		
		2.6.3 Anisotropic Media	30		
	2.7	Special Considerations for 2D Sheets	32		
		2.7.1 Fourier Transforms of a Special Function	32		
		2.7.2 Method of Images	33		
		2.7.3 Screening Functions in a 2D System	39		
	2.8	Fields from a Time-Dependent Electric or Magnetic			
			42		
	Refer	ences	43		
3	Com	olex Analysis	45		
	3.1	Analytic Functions	45		
	3.2	Laurent Expansion and Residues 4			
	3.3	Contour Integration in the Complex Plane	47		
		3.3.1 Integration Around a Pole	48		
		3.3.2 Argument Principle and Its Extension	50		

	3.4	Analytic Properties of Response Functions	51 57
	Defen	3.4.1 Kramers Kronig Dispersion Relations	57 60
	Refer	ence	00
4	Statis	tical Physics	61
	4.1	Thermodynamic Potentials and Legendre Transformations	61
	4.2	Distribution Functions	65
	4.3	Internal Energy and Helmholtz Energy for System	
		of Mass-Less Bosons	66
	Refer	ence	68
5	Elect	romagnetic Normal Modes	69
	5.1	Normal Modes and Their Properties	69
		5.1.1 The Quantum Mechanical Harmonic Oscillator	74
		5.1.2 Classical Versus Quantum Systems	80
	5.2	Interaction from Normal Modes	81
	5.3	Different Mode Types	85
		5.3.1 Vacuum Modes	86
		5.3.2 Bulk Modes	87
		5.3.3 Surface Modes	93
	5.4	Modes for a Gap Between Two Half Spaces	97
		5.4.1 Transverse Magnetic Modes	100
		5.4.2 Transverse Electric Modes	103
		5.4.3 Modes in Non-retarded Treatment	106
	Refer	rences	107
6	Diffe	rent Approaches	109
	6.1	Summation of Pair Interactions	109
	6.2	Interactions Between Objects at Small Separations:	
		The Proximity Force Approximation	115
		6.2.1 General Expression for Half Spaces, Cylinders	
		and Spheres	117
	6.3	Many-Body Approach in Non-Retarded Treatment	118
	6.4	Many-Body Approach in Fully Retarded Treatment	120
	6.5	Brief Compilation of Methods or Approaches	122
	Refer	rences	123
7	Gene	ral Method to Find the Normal Modes in Layered	
	Struc	ctures	125
	7.1	The Scheme	125
	Refer	rences	131

Par	t II	Non-Retarded Formalism: van der Waals	
8	Van	der Waals Force	135
	8.1	Equation of State for Ideal Gas	135
		8.1.1 2D Version	137
	8.2	Equation of State for Non-ideal Gas	138
		8.2.1 2D Version	140
	8.3	Van der Waals Force Between Two Atoms	142
		8.3.1 Zero Temperature	145
	-	8.3.2 Finite Temperature	149
	Refe	erences	151
9	Van	der Waals Interaction in Planar Structures	153
	9.1	Adapting the General Method of Chap. 7 to Planar	
		Structures and to the Neglect of Retardation	153
	9.2	Basic Structure Elements	156
		9.2.1 Single Planar Interface	156
		9.2.2 Planar Layer	157
		9.2.3 2D Planar Film \dots	158
	0.2	9.2.4 Thin Planar Diluted Gas Film	159
	9.3	1 wo Half Spaces	159
	0.4	Two Slabs	163
	7.4	0.4.1 Interaction Between Two Gold Slabs	164
	95	Two 2D Films	164
).5	951 Interaction Between Two Graphene Sheets	165
		9.5.1 Interaction Between Two Oraphene Sheets	166
	9.6	Film-Wall	168
		9.6.1 Interaction Between Graphene and an Au-Wall	168
		9.6.2 Interaction Between a 2D Metal Film	
		and an Au-Wall	169
	9.7	Atom-Wall	170
		9.7.1 Li-Atom–Au-Wall Interaction	171
	9.8	Atom in Planar Gap	172
	9.9	Atom-Film	174
		9.9.1 Li-Atom–Graphene-Sheet Interaction	175
		9.9.2 Li-Atom–2D-Metal-Film Interaction	176
	9.10	Atom in Between Two Planar Films	176
	9.11	Alternative Derivations of the Normal Modes	178
		9.11.1 Two 2D Films	178
		9.11.2 A 2D Film Next to a Wall	181
	0.1-	9.11.3 Two Half Spaces	184
	9.12	Interaction Between Two Atoms from Summation	
		of Pair Interactions	185

Contents

	9.13	Spatial Dispersion	187
		9.13.1 The Formalism	188
		9.13.2 Electric Modes at a Single Interface	192
		9.13.3 Magnetic Modes at a Single Interface	195
		9.13.4 Electric Modes Associated with a Gap Between	100
		Two Half Spaces	198
		9.13.5 Magnetic Modes Associated with a Gap Between	• • •
		Two Half Spaces	204
		9.13.6 Van der Waals Interactions Between Two Half	• • • •
		Spaces	206
	Refere	nces	207
0	Van d	er Waals Interaction in Spherical Structures.	209
	10.1	Adapting the General Method of Chap. 7 to Spherical	• • • •
		Structures and to the Neglect of Retardation	209
	10.2	Basic Structure Elements	212
		10.2.1 Solid Sphere or Ball	212
		10.2.2 Spherical Shell	213
		10.2.3 Thin Spherical Diluted Gas Film	214
		10.2.4 2D Spherical Film	215
	10.3	Atom-Ball Interaction	216
		10.3.1 Li-Atom–Au-Ball Interaction	218
	10.4	Force on an Atom in a Spherical Cavity	219
		10.4.1 Force on a Li-Atom in a Spherical Gold Cavity	220
	10.5	van der Waals Interaction Between Two Atoms	221
	10.6	Force Between Two Spherical Objects	221
		10.6.1 Interaction Between Two Gold Balls	222
		10.6.2 Interaction Between Two Graphene Spheres	222
	10.7	Force on an Atom in a Spherical Gap	223
	10.8	Force on an Atom Outside a 2D Spherical Shell	224
		10.8.1 Interaction Between a Li-Atom and a Graphene	
		Sphere	226
	10.9	Force on an Atom Inside a 2D Spherical Shell	226
		10.9.1 Force on a Li-Atom Inside a Graphene Sphere	228
	10.10	Interaction Between Two 2D Concentric Spherical Shells	228
		10.10.1 Interaction Between Two Concentric Graphene	
		Spheres	229
	10.11	Force on an Atom in Between Two 2D Spherical Films	230
	10.12	Force Between Two Atoms from Summation of Pair	
		Interactions	231
	Refere	nces	232

11	Van d	er Waals Interaction in Cylindrical Structures	233	
	11.1	Adapting the General Method of Chap. 7 to Cylindrical		
		Structures and to the Neglect of Retardation	233	
	11.2	Basic Structure Elements	236	
		11.2.1 Solid Cylinder	237	
		11.2.2 Cylindrical Shell	237	
		11.2.3 Thin Cylindrical Diluted Gas Film	238	
		11.2.4 2D Cylindrical Film	239	
	11.3	Force on an Atom Outside a Cylinder	241	
		11.3.1 Force Between a Li-Atom and a Gold Cylinder	242	
	11.4	Force on an Atom in a Cylindrical Cavity	243	
		11.4.1 Force on a Li-Atom in a Cylindrical Gold Cavity	245	
	11.5	Force on an Atom in a Cylindrical Gap	245	
	11.6	Force Between Two Cylindrical Objects	247	
		11.6.1 Interaction Between Two Gold Cylinders	247	
	11.7	Force on an Atom Outside a 2D Cylindrical Shell	248	
		11.7.1 Interaction Between a Li-Atom and a Graphene		
		Cylinder	249	
	11.8	Force on an Atom Inside a 2D Cylindrical Shell	250	
		11.8.1 Force on a Li-Atom Inside a Graphene Cylinder	251	
	11.9	Interaction Between Two 2D Coaxial Cylindrical Shells	251	
		11.9.1 Interaction Between Two Coaxial Cylindrical		
		Graphene Shells	252	
	11.10	Force on an Atom in Between Two 2D Coaxial Cylindrical		
		Films	253	
	Refere	nces	255	

Part III Fully Retarded Formalism: Casimir

12	Casimi	r Interaction		259
	12.1	Casimir-Polde	er Interaction Between Two Atoms	259
		12.1.1 Zer	o Temperature Casimir-Polder Potential	
		Bet	ween Two Atoms	263
		12.1.2 Fini	te Temperature Casimir-Polder Potential	
		Bet	ween Two Atoms	265
	12.2	Equation of S	State for Casimir-Polder Gas	268
	Referen	nces		271
13	Disper	sion Interaction	on in Planar Structures	273
	13.1	Adapting the	General Method of Chap. 7 to Planar	
		Structures	· · · · · · · · · · · · · · · · · · ·	273
	13.2	Basic Structur	re Elements	276
		13.2.1 Sing	gle Planar Interface	276
		13.2.2 Plan	ar Layer	277

		13.2.3	2D Planar Film	279
		13.2.4	Thin Planar Diluted Gas Film	280
	13.3	Two Ha	If Spaces	281
		13.3.1	Interaction Between Two Gold Half Spaces	281
	13.4	Two Sla	bs	282
		13.4.1	Interaction Between Two Gold Slabs	283
	13.5	Two 2D	Films	284
		13.5.1	Interaction Between Two Graphene Sheets	285
		13.5.2	Interaction Between Two 2D Metal Films	287
	13.6	Film-Wa	۱۱	288
		13.6.1	Interaction Between Graphene and an Au-Wall	289
		13.6.2	Interaction Between a 2D Metal Film	
			and an Au-Wall	289
	13.7	Atom-W	'all	291
		13.7.1	Li-Atom–Au-Wall Interaction	293
	13.8	Atom in	Planar Gap	294
	13.9	Atom-Fi	lm	296
		13.9.1	Li-Atom–Graphene-Sheet Interaction	298
		13.9.2	Li-Atom–2D-Metal-Film Interaction	300
	13.10	Atom in	Between Two Planar Films	301
	13.11	Alternati	ve Derivations of the Normal Modes	303
		13.11.1	Two 2D Films	304
		13.11.2	A 2D Film Next to a Wall	308
		13.11.3	Two Half Spaces	310
	13.12	Casimir	Interaction Between Two Atoms from Summation	
		of Pair I	nteractions	311
	13.13	Spatial I	Dispersion	313
		13.13.1	Modes at a Single Interface	321
		13.13.2	Modes Associated with a Gap Between Two	
			Half Spaces	326
		13.13.3	Dispersion Interactions Between Two Gold	
			Plates in Vacuum	333
	Refere	nces		336
14	Disper	sion Inte	raction in Spherical Structures	339
	14.1	Adapting	g the General Method of Chap. 7 to Spherical	
		Structure	28	339
	14.2	Basic St	ructure Elements	344
		14.2.1	Solid Sphere or Ball	345
		14.2.2	Spherical Shell	346
		14.2.3	Thin Spherical Diluted Gas Film	347
		14.2.4	2D Spherical Film	349
			-	

	14.3	Coated Sphere in a Medium	350
	14.4	Atom-Ball Interaction	350
		14.4.1 Li-Atom–Au-Ball Interaction	353
	14.5	Force on an Atom in a Spherical Cavity	354
	14.0	14.5.1 Force on a Li-Atom in a Spherical Gold Cavity	358
	14.0	Casimir-Polder Interaction Between Two Atoms	261
	14.7	Force on an Atom Outside a 2D Subarical Shall	262
	14.0	14.8.1 Interaction Between a Li-Atom and a Graphene Sphere	363
	14.9	Force on an Atom Inside a 2D Spherical Shell	364
	2	14.9.1 Force on a Li-Atom Inside a Graphene Sphere	365
	14.10	Interaction Between Two 2D Spherical Shells	365
		14.10.1 Interaction Between Two Concentric Graphene	
		Spheres	367
	14.11	Force on an Atom in Between Two 2D Spherical Films	368
	14.12	Force Between Two Atoms from Summation of Pair	
		Interactions	369
	Referen	nces	371
15	Disper	sion Interaction in Cylindrical Structures	373
	15.1	Adapting the General Method of Chap. 7 to Cylindrical	
		Structures	373
	15.2	Basic Structure Elements	377
		15.2.1 Solid Cylinder	378
		15.2.2 Thin Cylindrical Diluted Gas Film	378
		15.2.3 2D Cylindrical Film	382
	15.3	Force on an Atom Outside a Cylinder	384
	154	15.3.1 Force Between a Li-Atom and a Gold Cylinder	389
	15.4	Force on an Atom Outside a 2D Cylindrical Shell	389
		15.4.1 Interaction Between a LI-Atom and a Graphene	201
	Refere		301
16	S	and outlask	202
10	Summ		393
Арр	oendix A	A: Interaction Power Laws Depending on Shape	207
		and Orientation.	397
Apţ	oendix I	3: Transforming Between Unit Systems	401
Арр	Appendix C: The Fourier Transform		
Арр	oendix I	D: Dielectric Functions	405
Index			