Contents

PREFACE TO VOLUME III	xvi
NOTATION	xx
24 HISTORICAL INTRODUCTION	1
24.1 Unconventional Symmetries and 'No-Go' Theorems	1
$SU(6)$ symmetry \Box Elementary no-go theorem for unconventional semi-simple compact Lie algebras \Box Role of relativity	ple
24.2 The Birth of Supersymmetry	4
Bosonic string theory \Box Fermionic coordinates \Box Worldsheet supersymmetry Wess-Zumino model \Box Precursors	
Appendix A SU(6) Symmetry of Non-Relativistic Quark Models	8
Appendix B The Coleman-Mandula Theorem	12
Problems	22
References	22
25 SUPERSYMMETRY ALGEBRAS	25
25.1 Graded Lie Algebras and Graded Parameters	25
Fermionic and bosonic generators \Box Super-Jacobi identity \Box Grassmann parameters \Box Structure constants from supergroup multiplication rules \Box Complex	

an conjugates

25.2 Supersymmetry Algebras 29

Haag-Lopuszanski-Sohnius theorem D Lorentz transformation of fermionic generators \Box Central charges \Box Other bosonic symmetries \Box R-symmetry \Box Simple viii

Contents

and extended supersymmetry \square Four-component notation \square Superconformal algebra

25.3 Space Inversion Properties of Supersymmetry Generators

Parity phases in simple supersymmetry \Box Fermions have imaginary parity \Box Parity matrices in extended supersymmetry \Box Dirac notation

25.4 Massless Particle Supermultiplets

Known particles are massless for unbroken supersymmetry \Box Helicity raising and lowering operators \Box Simple supersymmetry doublets \Box Squarks, sleptons, and gauginos \Box Gravitino \Box Extended supersymmetry multiplets \Box Chirality problem for extended supersymmetry

25.5 Massive Particle Supermultiplets

Raising and lowering operators for spin 3-component \Box General massive multiplets for simple supersymmetry \Box Collapsed supermultiplet \Box Mass bounds in extended supersymmetry \Box BPS states and short supermultiplets

Prob	olems	53
Refe	rences	54
26	SUPERSYMMETRIC FIELD THEORIES	55

26.1 Direct Construction of Field Supermultiplets

Construction of simplest N = 1 field multiplet \Box Auxiliary field \Box Infinitesimal supersymmetry transformation rules \Box Four-component notation \Box Wess-Zumino supermultiplets regained

26.2 General Superfields

Superspace spinor coordinates \Box Supersymmetry generators as superspace differential operators \Box Supersymmetry transformations in superspace \Box General superfields \Box Multiplication rules \Box Supersymmetric differential operators in superspace \Box Supersymmetric actions for general superfields \Box Parity of component fields \Box Counting fermionic and bosonic components

26.3 Chiral and Linear Superfields

68

75

Chirality conditions on a general superfield \Box Left- and right-chiral superfields \Box Coordinates x_{\pm}^{μ} \Box Differential constraints \Box Product rules \Box Supersymmetric \mathscr{F} terms \Box \mathscr{F} -terms equivalent to *D*-terms \Box Superpotentials \Box Kahler potentials \Box Partial integration in superspace \Box Space inversion of chiral superfields \Box *R*-symmetry again \Box Linear superfields

26.4 Renormalizable Theories of Chiral Superfields

Counting powers \Box Kinematic Lagrangian \Box \mathscr{F} -term of the superpotential \Box Complete Lagrangian \Box Elimination of auxiliary fields \Box On-shell superalgebra \Box Vacuum solutions \Box Masses and couplings \Box Wess-Zumino Lagrangian regained ix

90

26.5 Spontaneous Supersymmetry Breaking in the Tree Approximation 83

O'Raifeartaigh mechanism \Box R-symmetry constraints \Box Flat directions \Box Goldstino

26.6 Superspace Integrals, Field Equations, and the Current Superfield 86

Berezin integration \Box *D*- and \mathscr{F} -terms as superspace integrals \Box Potential superfields \Box Superspace field equations \Box Conserved currents as components of linear superfields \Box Conservation conditions in superspace

26.7 The Supercurrent

Supersymmetry current \Box Superspace transformations generated by the supersymmetry current \Box Local supersymmetry transformations \Box Construction of the supercurrent \Box Conservation of the supercurrent \Box Energy-momentum tensor and *R*-current \Box Scale invariance and *R* conservation \Box Non-uniqueness of supercurrent

26.8 General Kahler Potentials* 102

Non-renormalizable non-derivative actions \Box *D*-term of Kahler potential \Box Kahler metric \Box Lagrangian density \Box Non-linear σ -models from spontaneous internal symmetry breaking \Box Kahler manifolds \Box Complexified coset spaces

Appendix	Majorana Spinors	107
Problems		111
References		112

27 SUPERSYMMETRIC GAUGE THEORIES 113

27.1 Gauge-Invariant Actions for Chiral Superfields 113

Gauge transformation of chiral superfields \Box Gauge superfield $V \Box$ Extended gauge invariance \Box Wess-Zumino gauge \Box Supersymmetric gauge-invariant kinematic terms for chiral superfields

27.2 Gauge-Invariant Action for Abelian Gauge Superfields 122

Field strength supermultiplet \Box Kinematic Lagrangian density for Abelian gauge supermultiplet \Box Fayet-Iliopoulos terms \Box Abelian field-strength spinor superfield $W_{\alpha} \Box$ Left- and right-chiral parts of $W_{\alpha} \Box W_{\alpha}$ as a superspace derivative of $V \Box$ Gauge invariance of $W_{\alpha} \Box$ 'Bianchi' identities in superspace

27.3 Gauge-Invariant Action for General Gauge Superfields 127

Kinematic Lagrangian density for non-Abelian gauge supermultiplet \Box Non-Abelian field-strength spinor superfield $W_{A\alpha} \Box$ Left- and right-chiral parts of $W_{A\alpha} \Box \theta$ -term \Box Complex coupling parameter τ

27.4 Renormalizable Gauge Theories with Chiral Superfields 132

Supersymmetric Lagrangian density \Box Elimination of auxiliary fields \Box Conditions for unbroken supersymmetry \Box Counting independent conditions and field

48

55

59

40

43

Contents

variables \Box Unitarity gauge \Box Masses for spins 0, 1/2, and 1 \Box Supersymmetry current \Box Non-Abelian gauge theories with general Kahler potentials \Box Gaugino mass

27.5 Supersymmetry Breaking in the Tree Approximation Resumed 144

Supersymmetry breaking in supersymmetric quantum electrodynamics \Box General case: masses for spins 0, 1/2, and 1 \Box Mass sum rule \Box Goldstino component of gaugino and chiral fermion fields

148

155

160

27.6 Perturbative Non-Renormalization Theorems

Non-renormalization of Wilsonian superpotential \Box One-loop renormalization of terms quadratic in gauge superfields \Box Proof using holomorphy and new symmetries with external superfields \Box Non-renormalization of Fayet–Iliopoulos constants $\xi_A \Box$ For $\xi_A = 0$, supersymmetry breaking depends only on superpotential \Box Non-renormalizable theories

27.7 Soft Supersymmetry Breaking*

Limitation on supersymmetry-breaking radiative corrections \Box Quadratic divergences in tadpole graphs

27.8 Another Approach: Gauge-Invariant Supersymmetry Transformations 157

De Wit-Freedman transformation rules \Box Preserving Wess-Zumino gauge with combined supersymmetry and extended gauge transformations

27.9 Gauge Theories with Extended Supersymmetry*

N = 2 supersymmetry from N = 1 supersymmetry and R-symmetry \Box Lagrangian for N = 2 supersymmetric gauge theory \Box Eliminating auxiliary fields \Box Supersymmetry currents \Box Witten-Olive calculation of central charge \Box Non-renormalization of masses \Box BPS monopoles \Box Adding hypermultiplets $\Box N = 4$ supersymmetry \Box Calculation of beta function $\Box N = 4$ theory is finite \Box Montonen-Olive duality

Problems	175
Problems	1/5

References	176
Actici chees	170

28 SUPERSYMMETRIC VERSIONS OF THE STANDARD MODEL 179

28.1 Superfields, Anomalies, and Conservation Laws 180

Quark, lepton, and gauge superfields \Box At least two scalar doublet superfields \Box \mathscr{F} -term Yukawa couplings \Box Constraints from anomalies \Box Unsuppressed violation of baryon and lepton numbers \Box R-symmetry \Box R parity \Box μ -term \Box Hierarchy problem \Box Sparticle masses \Box Cosmological constraints on lightest superparticle

28.2 Supersymmetry and Strong-Electroweak Unification 188

Renormalization group equations for running gauge couplings D Effect of super-

Contents

symmetry on beta functions \Box Calculation of weak mixing angle and unification mass \Box Just two scalar doublet superfields \Box Coupling at unification scale

28.3 Where is Supersymmetry Broken? 192

Tree approximation supersymmetry breakdown ruled out \Box Hierarchy from nonperturbative effects of asymptotically free gauge couplings \Box Gauge and gravitational mediation of supersymmetry breaking \Box Estimates of supersymmetrybreaking scale \Box Gravitino mass \Box Cosmological constraints

28.4 The Minimal Supersymmetric Standard Model 198

Supersymmetry breaking by superrenormalizable terms \Box General Lagrangian \Box Flavor changing processes \Box Calculation of $K^0 \leftrightarrow \overline{K}^0 \Box$ Degenerate squarks and sleptons \Box CP violation \Box Calculation of quark chromoelectric dipole moment \Box 'Naive dimensional analysis' \Box Neutron electric dipole moment \Box Constraints on masses and/or phases

28.5 The Sector of Zero Baryon and Lepton Number 209

D-term contribution to scalar potential $\Box \mu$ -term contribution to scalar potential \Box Soft supersymmetry breaking terms \Box Vacuum stability constraint on parameters \Box Finding a minimum of potential $\Box B\mu \neq 0$ \Box Masses of CP-odd neutral scalars \Box Masses of CP-even neutral scalars \Box Masses of charged scalars \Box Bounds on masses \Box Radiative corrections \Box Conditions for electroweak symmetry breaking \Box Charginos and neutralinos \Box Lower bound on $|\mu|$

28.6 Gauge Mediation of Supersymmetry Breaking 220

Messenger superfields \Box Supersymmetry breaking in gauge supermultiplet propagators \Box Gaugino masses \Box Squark and slepton masses \Box Derivation from holomorphy \Box Radiative corrections \Box Numerical examples \Box Higgs scalar masses \Box μ problem \Box A_{ij} and C_{ij} parameters \Box Gravitino as lightest sparticle \Box Next-to-lightest sparticle

28.7 Baryon and Lepton Non-Conservation 235

Dimensionality five interactions \Box Gaugino exchange \Box Gluino exchange suppressed \Box Wino and bino exchange effects \Box Estimate of proton lifetime \Box Favored modes of proton decay

Problems	24	0

References 241

29 BEYOND PERTURBATION THEORY 248

29.1 General Aspects of Supersymmetry Breaking 248

Finite volume \Box Vacuum energy and supersymmetry breaking \Box Partially broken extended supersymmetry? \Box Pairing of bosonic and fermionic states \Box Pairing of vacuum and one-goldstino state \Box Witten index \Box Supersymmetry unbroken

in the Wess-Zumino model \Box Models with unbroken supersymmetry and zero Witten index \Box Large field values \Box Weighted Witten indices

29.2 Supersymmetry Current Sum Rules

256

Sum rule for vacuum energy density \Box One-goldstino contribution \Box The supersymmetry-breaking parameter $F \Box$ Soft goldstino amplitudes \Box Sum rule for supersymmetry current-fermion spectral functions \Box One-goldstino contribution \Box Vacuum energy density in terms of \mathscr{F} and D vacuum values \Box Vacuum energy sum rule for infinite volume

29.3 Non-Perturbative Corrections to the Superpotential 266

Non-perturbative effects break external field translation and R-conservation \Box Remaining symmetry \Box Example: generalized supersymmetric quantum chromodynamics \Box Structure of induced superpotential for $C_1 > C_2 \Box$ Stabilizing the vacuum with a bare superpotential \Box Vacuum moduli in generalized supersymmetric quantum chromodynamics for $N_c > N_f \Box$ Induced superpotential is linear in bare superpotential parameters for $C_1 = C_2 \Box$ One-loop renormalization of $[W_{\alpha}W_{\alpha}]_{\mathscr{F}}$ term for all C_1, C_2

29.4 Supersymmetry Breaking in Gauge Theories

Witten index vanishes in supersymmetric quantum electrodynamics \Box C-weighted Witten index \Box Supersymmetry unbroken in supersymmetric quantum electrodynamics \Box Counting zero-energy gauge field states in supersymmetric quantum electrodynamics \Box Calculating Witten index for general supersymmetric pure gauge theories \Box Counting zero-energy gauge field states for general supersymmetric pure gauge theories \Box Weyl invariance \Box Supersymmetry unbroken in general supersymmetric pure gauge theories \Box Witten index and R anomalies \Box Adding chiral scalars \Box Model with spontaneously broken supersymmetry

29.5 The Seiberg-Witten Solution*

287

276

Underlying N = 2 supersymmetric Lagrangian \Box Vacuum modulus \Box Leading non-renormalizable terms in the effective Lagrangian \Box Effective Lagrangian for component fields \Box Kahler potential and gauge coupling from a function $h(\Phi) \Box$ SU(2) R-symmetry \Box Prepotential \Box Duality transformation \Box $h(\Phi)$ translation \Box \mathbb{Z}_8 R-symmetry \Box $SL(2, \mathbb{Z})$ -symmetry \Box Central charge \Box Charge and magnetic monopole moments \Box Perturbative behavior for large $|a| \Box$ Monodromy at infinity \Box Singularities from dyons \Box Monodromy at singularities \Box Seiberg-Witten solution \Box Uniqueness proof

Problems	305

References	305
------------	-----

- **30 SUPERGRAPHS** 307
- **30.1 Potential Superfields** 308

Problem of chiral constraints \Box Corresponding problem in quantum electrodynamics \Box Path integrals over potential superfields

Contents

30.2 Superpropagators 310

A troublesome invariance \Box Change of variables \Box Defining property of superpropagator \Box Analogy with quantum electrodynamics \Box Propagator for potential superfields \Box Propagator for chiral superfields

30.3 Calculations with Supergraphs 313

Superspace quantum effective action \Box Locality in fermionic coordinates \Box *D*-terms and \mathscr{F} -terms in effective action \Box Counting superspace derivatives \Box No renormalization of \mathscr{F} -terms

- References 316
- **31 SUPERGRAVITY** 318
- **31.1 The Metric Superfield** 319

Vierbein formalism \Box Transformation of gravitational field \Box Transformation of gravitino field \Box Generalized transformation of metric superfield $H_{\mu} \Box$ Interaction of H_{μ} with supercurrent \Box Invariance of interaction \Box Generalized transformation of H_{μ} components \Box Auxiliary fields \Box Counting components \Box Interaction of H_{μ} component fields \Box Normalization of action

31.2 The Gravitational Action 326

Einstein superfield $E_{\mu} \Box$ Component fields of $E_{\mu} \Box$ Lagrangian for $H_{\mu} \Box$ Value of $\kappa \Box$ Total Lagrangian \Box Vacuum energy density \Box Minimum vacuum energy \Box De Sitter and anti-de Sitter spaces \Box Why vacuum energy is negative \Box Stability of flat space \Box Weyl transformation

31.3 The Gravitino

333

337

341

Irreducibility conditions on gravitino field \Box Gravitino propagator \Box Gravitino kinematic Lagrangian \Box Gravitino field equation \Box Gravitino mass from broken supersymmetry \Box Gravitino mass from s and p

31.4 Anomaly-Mediated Supersymmetry Breaking

First-order interaction with scale non-invariance superfield $X \square$ General formula for $X \square$ General first-order interaction \square Gaugino masses \square Gluino mass \square B parameter \square Wino and bino masses \square A parameters

31.5 Local Supersymmetry Transformations

Wess-Zumino gauge for metric superfield \Box Local supersymmetry transformations \Box Invariance of action

xiii

xiv

343

355

382

393

31.6 Supergravity to All Orders

Local supersymmetry transformation of vierbein, gravitino, and auxiliary fields Extended spin connection
Local supersymmetry transformation of general scalar supermultiplet
Product rules for general superfields
Real matter superfields
Chiral matter superfields
Product rules for chiral superfields
Cosmological constant and gravitino mass
Lagrangian for supergravity and chiral fields with general Kahler potential and superpotential
Elimination of auxiliary fields
Kahler metric
Weyl transformation
Scalar field potential Conditions for flat space and unbroken supersymmetry
Complete bosonic Lagrangian
Canonical normalization
Combining superpotential and Kahler potential
No-scale models

31.7 Gravity-Mediated Supersymmetry Breaking

Early theories with hidden sectors \Box Hidden sector gauge coupling strong at energy $\Lambda \Box$ First version: Observable and hidden sectors \Box Separable bare superpotential \Box General potential \Box Terms of order $\kappa^4 \Lambda^8 \approx m_g^4 \Box \Lambda$ estimated as $\approx 10^{11}$ GeV $\Box \mu$ - and $B\mu$ -terms \Box Squark and slepton masses \Box Gaugino masses $\Box A$ -parameters \Box Second version: Observable, hidden, and modular sectors \Box Dynamically induced superpotential for modular superfields \Box Effective superpotential of observable sector $\Box \mu$ -term \Box Potential of observable sector scalars \Box Terms of order $\kappa^8 \Lambda^{12} \approx m_g^4 \Box$ Soft supersymmetry-breaking terms $\Box \Lambda$ estimated as $\approx 10^{13}$ GeV \Box Shifts in modular fields \Box Absence of C_{ij} terms \Box Squark and slepton masses \Box Gaugino masses

Appendix	The Vierbein Formalism	375
Problems		378
References		379

32 SUPERSYMMETRY ALGEBRAS IN HIGHER DIMENSIONS 382

32.1 General Supersymmetry Algebras

Classification of fermionic generators \Box Definition of weight \Box Fermionic generators in fundamental spinor representation \Box Fermionic generators commute with $P_{\mu} \Box$ General form of anticommutation relations \Box Central charges \Box Anticommutation relations for odd dimensionality \Box Anticommutation relations for even dimensionality \Box R-symmetry groups

32.2 Massless Multiplets

Little group O(d-2) \Box Definition of 'spin' j \Box Exclusion of j > 2 \Box Missing fermionic generators \Box Number of fermionic generators ≤ 32 \Box N = 1 supersymmetry for d = 11 \Box Three-form massless particle \Box Types IIA, IIB and heterotic supersymmetry for d = 10

32.3 *p***-Branes** 397

New conserved tensors D Fermionic generators still in fundamental spinor repre-

Contents

xv

sentation \Box Fermionic generators still commute with $P_{\mu} \Box$ Symmetry conditions on tensor central charges \Box 2-form and 5-form central charges for d = 11

Appendix Spinors in Higher Dimensions	401
Problems	407
References	407
AUTHOR INDEX	411
SUBJECT INDEX	416