Contents

1	Elect	tron Sou	Irces			
	1.1	Introd	luction and Definition			
	1.2	Schot	tky Sources			
		1.2.1	Emission Theory			
		1.2.2	Coulomb Interaction			
		1.2.3	Practical Aspects			
	1.3	Field I	Emission Sources			
		1.3.1	Emission Theory			
		1.3.2	Practical Aspects			
	1.4	Photo	-Emission Sources			
	1.5	Effect	of the Electron Sourc			
		1.5.1	Contributions to the			
		1.5.2	Current in a Probe			
	Арр	endix .				
	Refe	rences .				
2	In situ and Operando					
	2.1	Gener	al Principles			
	2.2	Some	history			
	2.3	The Po	ossibilities			
		2.3.1	Post-Mortem Charac			
		2.3.2	Statistics			
	2.4	Time				
		2.4.1	Recording the Data			
		2.4.2	The CCD Camera			
		2.4.3	Direct-Detection Car			
		2.4.4	Software and Data I			
		2.4.5	Drift Correction			
		2.4.6	Ultrafast Electron M			
	2.5	The Er	nvironment			

	. 1
tions of Parameters	. 2
	. 4
	. 4
ctions	. 6
s	. 7
	. 8
	. 8
s	. 10
	. 10
ource Parameters on Resolution in STEM .	. 11
o the Probe Size	. 11
be	. 12
	. 14
	. 15
	. 17
	. 18
	. 18
	. 19
aracterization	. 20
	. 20
	. 22
ata	. 22
a	. 22
Cameras	. 22
ata Handling	. 23
•••••••••••••••••••••••••••••••••••••••	. 24
n Microscopy	. 25
•••	. 29

		2.5.1	Ultrahigh Vacuum	36
		2.5.2	Working in a Gas Cell	37
		2.5.3	Working in a Liquid Cell	39
	2.6	The Te	emperature	41
		2.6.1	Temperature Measurement	41
		2.6.2	Heating	42
		2.6.3	Cooling	46
	2.7	Other	Stimuli	48
		2.7.1	Deformation	48
		2.7.2	Magnetic Fields	55
		2.7.3	Electric Fields	56
		2.7.4	Photons	64
	2.8	Addin	g or Removing Material	67
		2.8.1	Depositing Layers/Particles	67
		2.8.2	Deposition Energy: Electron and Ion Irradiation	68
	2.9	The Fu	uture	73
	Appe	ndix .		75
	Refer	ences .		76
3	Electi	ron Diff	fraction and Phase Identification	81
	3.1	Introd	luction	82
	3.2	Spino	dal Alloys	83
		3.2.1	Example: Ordered FeBe Phases and A2 Matrix	83
	3.3	Supera	alloys with Ordered Precipitates	85
		3.3.1	Example: y" and y' Precipitation in Alloy 718	87
		3.3.2	Example: D0 _a -Ordered δ Precipitation in Alloy 718	89
	3.4	Carbic	de Precipitation in fcc Alloys	93
		3.4.1	Example: $M_{23}C_6$ Precipitation in a Ni–Base Alloy	93
		3.4.2	Example: MC Carbides in a Ni–Base Alloy	94
	3.5	Ferriti	c Steels	96
		3.5.1	Relationships Between Austenite and Ferrite, Austenite and Martensite (fcc/bcc)	96
		3 <i>.</i> 5.2	Relationship Between Cementite (Orthorhombic Fe_3C or M_3C) and Ferrite/Tempered Martensite	97
		3.5.3	Relationships Between Alloy Carbides and Ferrite	97
		3.5.4	Precipitation in Ferritic Structures.	98
	3.6	Epitax	tial Oxide on Metal: Presence of Fe_3O_4 on Steel Foils \ldots	99
	Appe	endix .		101
	Refer	rences .		102

4	Conv Patte	ergent- rns	Beam Electron Diffraction: Symmetry and Large-Angle	103
	4.1	Symmetry		
	4.2	Point-	Group Determination	104
	4.3	Space-	Group Determination	109
		4.3.1	Forbidden Reflections	109
		4.3.2	Black Crosses	111
		4.3.3	Complete Procedure for Space-Group Determination	113
	4.4	Ni₃Mo	– A Worked Example	114
		4.4.1	Ni ₃ Mo – a Worked Example, Part I: Point Group	114
		4.4.2	Qualifications	118
		4.4.3	Ni ₃ Mo – a Worked Example, Part II: Space Group	119
	4.5	Additi	onal and Alternative Symmetry Methods	120
		4.5.1	Symmetry Determination from Off-Axis Patterns	120
		4.5.2	Symmetry from Precession Patterns	122
	4.6	More o	on Glide Planes	123
		4.6.1	GM Lines in HOLZ Reflections	124
		4.6.2	Glide Planes Normal to the Beam	124
	4.7	Beyon	d Symmetry	124
		4.7.1	Enantiomorphous Pairs: Handedness	126
		4.7.2	Polarity	126
		4.7.3	Coherent Convergent-Beam Diffraction	127
	4.8	Tanaka	a Methods	127
	4.9	LACBE	D	127
		4.9.1	The Nature of LACBED Patterns	129
		4.9.2	Obtaining LACBED Patterns in Practice	130
		4.9.3	Choosing the Parameters	131
	4.10	Spheri	cal Aberration and LACBED	132
	4.11	Crystal	Defects in LACBED Patterns: Dislocations	132
	4.12	Crystal Bound	Defects in LACBED Patterns: Stacking Faults and Antiphase aries	134
	4.13	Other	Tanaka Methods	134
		4.13.1	Bright- and Dark-Field LACBED	134
		4.13.2	Convergent-Beam Imaging (CBIM)	136
		4.13.3	Rastering Techniques	137
	Appe	ndix .		141
	Refer	ences .		142

5	Electr	on Crys	stallography, Charge-Density Mapping, and Nanodiffraction	145			
	5.1	Can W	e Quantify Electron Diffraction Data?	146			
	5.2	Quant	itative CBED for Charge-Density Mapping	147			
	5.3	Strain Mapping, High Voltage, Lattice Parameters Measured					
		by QCI	3ED	153			
	5.4	Spot P	atterns – Solving Crystal Structures	155			
	5.5	The Pr	ecession Method	157			
	5.6	Diffuse	e Scattering, Defects, Phonons, and Phase Transitions	158			
	5.7	Diffrac and Al	tive Imaging, Ptychography, STEM Holography, Ronchigrams. II That	, 159			
	5.8	Equipr	nent for Quantitative Electron Diffraction	162			
	Appe	ndix .		163			
	Refer	ences.		164			
6	Digita	alMicro	graph	167			
	6.1	Introd	uction	168			
		6.1.1	What Is DigitalMicrograph?	168			
		6.1.2	Installing DigitalMicrograph Offline	168			
		6.1.3	A (Very) Quick Overview	168			
	6.2	Under	standing Data	170			
		6.2.1	What is an Image?	170			
		6.2.2	Image Display	171			
		6.2.3	Number Formats	173			
		6.2.4	Image Calibration and Image Tags	178			
		6.2.5	Some Simple Tools	180			
		6.2.6	Extracting Subsets of Data	181			
	6.3	Digita	I Image Processing	183			
		6.3.1	Image 'Filters'	185			
		6.3.2	Fourier Transformation in Images	187			
		6.3.3	Fourier Filtering.	189			
		6.3.4	Coordinate Transformations	192			
	6.4	Scripti	ng and Plugins	193			
	Appe	ndix		195			
	Refer	ences .		195			
7	Electi	ron Wav	ves, Interference, and Coherence	197			
	7.1	Introd	uction	198			
	7.2	Descri	ption of Waves	198			
		7.2.1	Plane Wave	199			

	7.2.2	Spherical Wave	199
	7.2.3	Modulated Wave	199
7.3	lnter	ference	200
7.4	l Mod	ulation of a Wave by an Object	201
7.5	Prop	agation of Waves	201
	7.5.1	Fresnel Approximation in the Near-Field of the Object	202
	7.5.2	Fraunhofer Approximation in the Far-Field of the Object $$.	202
7.6	i Imag	ing: Formation of the Image Wave	203
	7.6.1	Fourier Transform of the Object Exit Wave	203
	7.6.2	Building the Image Wave by Inverse Fourier Transform of the Fourier Spectrum	203
7.7	' Elect	ron Wave Function	204
7.8	Elect	ron Interference	205
7.9	Findi	ngs	206
7.1	0 Inter	pretation	207
7.1	1 Cohe	erence	207
	7.11.	1 Spatial Coherence	208
	7.11.	2 Coherent Current	210
	7.11.	3 Temporal Coherence	211
	7.11.	4 Total Degree of Coherence	211
	7.11.	5 A Generalization	211
	7.11.	6 Coherence at Inelastic Interaction	211
Ар	pendix		213
Re	ferences		213
Ele	ctron Ho	olography	215
8.1	Big P	roblem with TEM: Phase Contrast	216
8.2	Wave	e Modulation and Conventional Imaging	216
	8.2.1	Amplitude Modulation	216
	8.2.2	Phase Modulation	217
	8.2.3	What Do We See in an Electron Image?	218
8.3	Princ	iple of Image-Plane Off-Axis Holography	219
	8.3.1	Recording a Hologram	219
	8.3.2	Reconstructing the Object Exit-Wave	220
	8.3.3	What Have We Achieved so Far?	223
8.4	Prop	erties of the Reconstructed Object Exit-Wave	223
8.5	Requ	irements of Holography	224
8.6	Qual	ity Criteria	224

8

Contents

x	х	v	ł	ł	

	8.7	Applica	ation to Electric Potentials on Nanometer Scale	225
		8.7.1	Phase Shift Due to Electrostatic Potentials	225
		8.7.2	Experimental Considerations	226
		8.7.3	Application Example: p-n Junctions	227
	8.8	Furthe	r Derivatives of Electron Holography	227
		8.8.1	Holographic Tomography	227
		8.8.2	Dark-Field Holography	228
	Appe	ndix .		230
	Refer	ences .		230
9	Focal	-Series I	Reconstruction	233
	9.1	Motiva	ation: Why the Effort?	234
	9.2	Quick \	Walk Through Electron Diffraction	235
	9.3	From t	he Wavefunction to the Image	237
		9.3.1	Imaging with a 'Neutral' Microscope	238
		9.3.2	Linear Imaging with a Constant-Phase-Shift Microscope	240
		9.3.3	Linear Imaging with a Real Microscope	241
		9.3.4	From Oscillations to Windings: an Integral View on Linear Imaging	247
	9.4	From t	he Images to the Wavefunction	249
		9.4.1	Tomographic Interpretation of Focal Series	249
		9.4.2	Fundamental Properties of Focal Series	250
		9.4.3	An Explicit Solution to the Linear Inversion Problem	253
		9.4.4	Nonlinear Reconstruction	255
		9.4.5	Numerical Correction of Residual Aberrations	256
	9.5	Applic	ation Examples	257
		9.5.1	Twin Boundaries in $BaTiO_3$	258
		9.5.2	Stacking Fault in GaAs	260
	Appe	ndix .		263
	Refer	ences .		264
10	Direc	t Metho	ods for Image Interpretation	267
	10.1	Introd	uction	268
	10.2	Basics	of Image Formation	268
		10.2.1	Real imaging	268
		10.2.2	Successive Imaging Steps	269
		10.2.3	Coherent Imaging	269
		10.2.4	High-Resolution Imaging in the TEM	270
	10.3	Focal-S	Series Reconstruction of the Exit Wave	271

	10.4	Interpretation of the Reconstructed Exit Wave	271
		10.4.1 Electron Channeling	272
		10.4.2 Argand Plot	273
	10.5	Quantitative Structure Refinement.	274
		10.5.1 Precision Versus Resolution	276
		10.5.2 Quantitative Model-Based Structure Determination	276
	Appe	ndix	280
	Refer	ences	280
11	Imagi	ng in STEM	283
	11.1	Z-Contrast STEM: an Introduction	284
		11.1.1 Independent Scatterers	284
		11.1.2 An Array of Scatterers	284
		11.1.3 As the Crystal Thickens	284
		11.1.4 Inside and Outside	286
		11.1.5 The Effect of Defects	287
		11.1.6 Quasicrystals	288
	11.2	An Electron's Eye View of STEM.	288
		11.2.1 Plane Waves and Probes	291
		11.2.2 Rayleigh, Airy and Resolution	292
	11.3	Lens Aberrations for STEM	293
		11.3.1 The Benefits of Aberration Correction	295
		11.3.2 Resolution in the Third Dimension – Depth Resolution	300
	11.4	Spatial and Temporal Incoherence	305
		11.4.1 Spatial Incoherence	305
		11.4.2 Temporal Incoherence	306
		11.4.3 "How Do I Know if I Have a Coherent Probe?" The	200
		Konchigram	306
	11.5	Concrent or Incoherent Imaging	310
		11.5.1 A Point Detector; Coherent Imaging	311
		11.5.2 An Infinite Detector: Incoherent Imaging	312
		Inaging	314
		11.5.4 Atoms Are Smaller in HAADF STEM.	315
		11.5.5 Transverse Coherence	316
		11.5.6 The Origin of Contrast in the Scanned Image	317
		11.5.7 Transfer Function and Damping Function	318
		11.5.8 Longitudinal Coherence.	319
		-	

		•	
¥	v	1	¥
n	л		л

	11.6	Dynamical Diffraction	323
	11.7	Other Sources of Image Contrast	326
	11.8	Image Processing	329
	11.9	Image Simulation	332
		11.9.1 Bloch Waves	333
		11.9.2 Multislice	333
		11.9.3 Bloch Waves with Absorption	333
		11.9.4 There Is No Stobb's Factor in HAADF	334
	11.10	Future Directions	335
	Appe	ndix	337
	Refer	ences	338
12	Electi	ron Tomography	343
	12.1	Theory of Projection	344
	12.2	Back-Projection	346
	12.3	Constrained Reconstruction	347
		12.3.1 Constraint by Projection Consistency	347
		12.3.2 Constraint by Discrete Methods	348
		12.3.3 Constraint by Symmetry	348
		12.3.4 Metric-Based Constraint	348
	12.4	Other Reconstruction Approaches	350
	12.5	Meeting the Projection Requirement	350
	12.6	STEM Tomography	351
	12.7	Element-Selected Tomography	354
	12.8	Dark-Field TEM Tomography	356
	12.9	Holographic Tomography	358
	12.10	Atomistic Tomography	359
	12.11	Experimental Limitations	360
	12.12	Beam Damage and Contamination	364
	12.13	Automated Acquisition	365
	12.14	Tilt-Series Alignment	366
	12.15	Visualization of Three-Dimensional Datasets	368
	12.16	Segmentation	369
	12.17	Quantitative Analysis of Volumetric Data	371
	Appe	ndix	373
	Refer	ences	373
13	EFTE	м	377
	13.1	Introduction	378
	13.2	Why Use EFTEM?	378

	13.3	Instrumentation for EFTEM	379
		13.3.1 General TEM Considerations	379
		13.3.2 The Imaging Filter	379
		13.3.3 Detector Considerations	380
	13.4	Limitations and Artefacts	381
		13.4.1 Spatial Resolution in EFTEM Images	381
		13.4.2 Non-Isochromaticity	383
		13.4.3 Sample Drift	383
		13.4.4 Diffraction Contrast	384
		13.4.5 Illumination Convergence	384
	13.5	Application of EFTEM	385
		13.5.1 Zero-Loss Imaging and Diffraction	385
		13.5.2 Measuring Relative Thickness (t/λ Mapping)	386
	13.6	Core-Loss Elemental Mapping	387
		13.6.1 Elemental Mapping (Three-Window Method)	387
		13.6.2 Jump-Ratio Mapping (Two-Window Method)	388
	13.7	EFTEM Spectrum-Imaging	389
	13.8	Low-Loss Imaging	392
	13.9	Alternative Imaging Techniques for Biological Specimens	393
	13.10	Quantitative Elemental Mapping	394
	13.11	Chemical State Mapping Using ELNES	396
	13.12	Hybrid EFTEM Modes (ω -q, Line Spectrum EFTEM)	397
	13.13	EFTEM Tomography	398
	Appe	ndix	401
	Refer	ences	401
14	Calcu	lating EELS	405
	14.1	Introduction	406
	14.2	Density Functional Theory (DFT)	407
		14.2.1 Introduction to DFT	407
		14.2.2 The Exchange Correlation Potential	409
		14.2.3 Approximations to the Potential	409
		14.2.4 Basis Sets	410
		14.2.5 The Korringa–Kohn–Rostoker (KKR) Method	412
	14.3	Calculations of the ELNES	412
		14.3.1 ELNES Theory	412
		14.3.2 The Core Hole	414
		14.3.3 Multiplet Theory	415
		14.3.4 Multiple Scattering (MS) Methods	416

			٠
v	v	v	
Λ	^	^	L

xxxii Contents

	14.4	Calculating Low-Loss EELS	417
	Appe	ndix	421
	Refer	ences	422
15	Diffra	ction & X-ray Excitation	425
	15.1	Introduction	426
	15.2	ALCHEMI	426
	15.3	Gedanken ALCHEMI	426
	15.4	Two Examples	428
		15.4.1 Dilute Solution/Partition Coefficient Analysis.	428
		15.4.2 Concentrated Solution/OTL Analysis	430
	15.5	Delocalization and Axial Channeling	431
	15.6	Optimizing ALCHEMI: 'Statistical' ALCHEMI	432
	15.7	Incoherent Channeling Patterns	432
	15.8	Vacancies and Interstitials	432
	15.9	Chemistry	434
	Appe	ndix	435
	Refer	ences	436
16	X-ray	and EELS Imaging	439
	16.1	What Are Spectral Images and Why Should We Collect Them?	440
	16.2	Some History	441
	16.3	Acquisition and Analysis of Spectral Images	442
		16.3.1 Sampling and the Effect of Probe Versus Pixel Size (STEM- XEDS/EELS) or Magnification (EFTEM)	442
		16.3.2 Signal: Count Rate, Dwell Time, Spectral Image Size, and Acquisition Time	443
		16.3.3 Drift Correction and Beam Damage	446
		16.3.4 Conventional Data Analysis Methods	446
	16.4	Multivariate Statistical Analysis Methods	451
		16.4.1 Principal Components Analysis (PCA)	454
		16.4.2 Factor Rotations	455
		16.4.3 Multivariate Curve Resolution (MCR)	456
		16.4.4 Quantification.	457
	16.5	Example of X-ray and Electron Energy-Loss Spectral Image	458
		16.5.1 Fe-Ni Spectral Image Acquisition and Quantification	458
		16.5.2 Mn-Doped SrTiO ₃ Grain Boundary Spectral Image Acquisition and Quantification	459
		16.5.3 Plasmon Mapping of AG Nanorods: EELS Spectral Image Analysis	462

	Appendix			
	Refe	ences	64	
17	Pract	ical Aspects and Advanced Applications of XEDS	67	
	17.1	Performance Parameters of XEDS Detectors	68	
		17.1.1 Detector, Fundamental Parameters	68	
		17.1.2 Monitoring Detector Contamination	70	
		17.1.3 Software to Determine Detector Parameters	71	
	17.2	X-ray Spectrum Simulation – a Tutorial and Applications of DTSA 4	72	
		17.2.1 What Is DTSA?	73	
		17.2.2 A Brief Tutorial of X-ray Spectrum Simulation for a Thin Specimen Using DTSA	75	
		17.2.3 Details of X-ray Simulation in DTSA	77	
		17.2.4 Application 1: Confirmation of Peak Overlap	81	
		17.2.5 Application 2: Evaluation of X-ray Absorption into a Thin Specimen	82	
		17.2.6 Application 3: Evaluation of the AEM-XEDS Interface 48	83	
		17.2.7 Application 4: Estimation of the Detectability Limits 48	83	
	17.3	The ζ-factor Method: a New Approach for Quantitative X-ray Analysis of Thin Specimens	86	
		17.3.1 Why Bother with Quantification?	86	
		17.3.2 What Is the ζ-factor?	87	
		17.3.3 Quantification Procedure in the ζ-factor Method 48	88	
		17.3.4 Determination of ζ factors	89	
		17.3.5 Applications of ζ-factor Method	90	
	17.4	Contemporary Aplications of X-ray Analysis	92	
		17.4.1 Renaissance of X-ray Analysis	93	
		17.4.2 XEDS Tomography for 3D Elemental Distribution 49	94	
		17.4.3 Atomic Resolution X-ray Mapping	95	
	Appe	ndix	00	
	Refer	ences	01	
Figu	ire and	Table Credits 50	05	
Inde	x		15	

Contents

х	х	х	Ī	Ī	Í