Contents

Preface — V

1	Introduction into MHD turbulence — 1
1.1	Turbulence around us —— 1
1.2	Kolmogorov scaling — 4
1.3	Compressible MHD equations and simulated turbulence — 6
1.4	How MHD cascade is different from hydro cascade? — 7
1.5	Turbulent dynamo — 9
1.6	Magnetohydrodynamics and reconnection 9
1.7	Observing MHD turbulence — 10
1.8	Applications of MHD turbulent theory — 10
1.9	Cosmic ray transport and acceleration — 11
2	Astrophysical dynamo — 13
2.1	Nonlinear small-scale dynamo — 14
2.1.1	Linear growth stage — 14
2.1.2	Locality of the small-scale dynamo — 16
2.1.3	Numerical results 17
2.1.4	Efficiency of nonlinear dynamo — 18
2.1.5	Dynamo simulations with intermittent driving — 19
2.2	Dynamo in galaxy clusters — 20
2.2.1	Physical conditions in galaxy clusters — 20
2.2.2	Limitation of dynamo simulations — 22
2.2.3	Analysis of cluster simulations — 24
2.2.4	Cluster magnetic fields — 26
3	Incompressible MHD turbulence — 29
3.1	Equations of incompressible MHD and conservation laws — 31
3.2	From weak to strong turbulence — 33
3.3	Reduced MHD approximation 35
3.4	Strong turbulence: phenomenology 36
3.4.1	Dissipation scales — 37
3.4.2	Anisotropy from phenomenological viewpoint 37
3.4.3	Modifications of GS95 39
3.5	Anisotropy from Lagrangian viewpoint — 39
3.6	Parallel spectrum: numerics —— 41
3.7	Parallel spectrum observations versus numerics — 43
3.8	Statistical indicators of turbulence — 45
2.0	

3.9 The scaling convergence argument — 48

3.10	Numerical studies of the spectral slope — 50
3.11	Dynamic alignment models 55
3.12	Anisotropy scaling study — 58
3.13	Summary of balanced driven MHD turbulence — 59
3.14	Turbulence driven by external current — 59
3.14.1	MHD equations with external current and conservation laws 60
3.14.2	Linear and nonlinear stages — 61
3.14.3	Empirical findings — 64
3.14.4	Applications of current driven turbulence to astrophysical
	systems — 65
4	Imbalanced MHD turbulence — 67
4.1	Theoretical considerations — 69
4.1.1	Lithwick, Goldreich, and Sridhar (2007) model. [295] LGS07 — 70
4.1.2	Beresnyak and Lazarian (2008) model. [30] BL 08 — 70
4.1.3	Perez and Boldvrey (2009) model, [356] PB09 71
4.2	Empirical study in MHD simulations with stochastic driving — 72
4.2.1	Establishment of the stationary state — 75
4.2.2	Parallel structure function — 76
4.2.3	Spectra and anisotropies — 79
4.2.4	Comparison with models 84
4.3	Empirical study in reduced MHD simulations with energy-controlled
	driving 86
4.3.1	Nonlinear cascading and dissipation rate 86
4.3.2	Imbalanced spectra 87
4.3.3	Imbalanced anisotropies 88
5	Compressibility in MHD turbulence 91
5.1	Decomposition into fundamental modes 91
5.2	Other ways of decomposition into fundamental modes 95
5.3	Decomposition into solenoidal and potential modes — 97
5.4	Density scalings — 98
5.4.1	Theoretical considerations 99
5.4.2	The code —— 100
5.4.3	Results 101
5.4.4	Implications — 102
5.5	Viscosity-dominated regime of MHD turbulence 103
5.6	Applying results to collisionless fluids — 106
5.7	Toward understanding of relativistic turbulence 106
5.7.1	Fully relativistic MHD turbulence — 109
5.7.2	Relativistic compressible turbulence: mode decomposition — 110

6	Intermittency of MHD turbulence — 117
6.1	General considerations — 117
6.2	She-Leveque model of intermittency — 118
6.3	Intermittency of incompressible turbulence — 118
6.4	Intermittency of compressible turbulence — 119
6.5	Intermittency of viscosity-damped turbulence — 121
	, , ,
7	Turbulence and charged particles — 123
7.1	Particle diffusion due to stochastic fields 124
7.1.1	Richardson's picture of diffusion 124
7.1.2	Field line diffusion — 125
7.1.3	Limiting cases: very small and very large distances — 126
7.1.4	Intertial range distances – hand-waving derivation – 126
7.1.5	Inertial range distances – Richardson–Alfvén diffusion – 127
7.1.6	Numerical results, asymmetric diffusion 127
7.1.7	The model of asymmetric diffusion — 130
7.1.8	Implications of asymmetric field line wandering for particle
	transport — 130
7.2	Turbulence and particle acceleration — 131
7.2.1	Observational evidence for acceleration different from classic
	DSA — 131
7.2.2	Statistics of general MHD flows and energy transfer — 134
7.2.3	Acceleration by curvature drift — 135
7.2.4	Numerical case study of two types of turbulence 137
7.2.5	Expected picture for turbulent acceleration in reconnection 138
8	Reconnection in the presence of MHD turbulence — 141
8.1	The problem of reconnection —— 141
8.1.1	Flux freezing and magnetic topology changes — 141
8.1.2	Sweet–Parker model and its generalization to turbulent media — 141
8.1.3	Temporal and spatial Richardson diffusion — 145
8.1.4	Turbulent reconnection and violation of magnetic flux freezing — 145
8.1.5	Turbulent reconnection in compressible media — 145
8.1.6	Turbulent reconnection in partially ionized gas 146
8.2	Testing turbulent reconnection — 149
8.3	Understanding turbulent relativistic reconnection 152
8.4	Generation of turbulence by reconnection — 156
8.4.1	Early-time turbulence in the planar current layer — 157
8.4.2	Compressible simulations with inflow and outflow of turbulence in the
	current layer — 159
8.5	Observational testing of turbulent reconnection — 161
8.5.1	Solar turbulent reconnection 161

Solar wind, Parker spiral, heliospheric current sheet — 162 8.5.2 Indirect observational evidence — 163 8.5.3 8.5.4 Flares of magnetic reconnection and associated processes — 164 8.6 Comparison of approaches to magnetic reconnection — 165 8.6.1 Turbulent reconnection and numerical simulations — 165 8.6.2 Turbulent reconnection versus tearing reconnection — 166 8.6.3 Turbulent reconnection: 3D reality versus 2D models — 167 8.6.4 Turbulent reconnection versus turbulent resistivity ----- 168 9 Turbulent transport of magnetic field and heat ---- 171 9.1 Important motivation: star formation problem ----- 171 9.2 Diffusion in magnetized turbulent fluid ---- 173 9.2.1 Physical picture of reconnection diffusion in the absence of gravity ----- 176 9.2.2 Reconnection diffusion in the presence of gravity ---- 179 9.3 Reconnection diffusion and the identity of magnetic field lines — 180 9.3.1 Explosive diffusion of magnetic field lines in turbulent flows — 180 9.3.2 Spontaneous stochasticity of magnetic field lines and reconnection diffusion ---- 183 9.3.3 Reconnection diffusion in partially ionized gas ---- 184 9.4 Theoretical expectations and numerical simulations of reconnection diffusion ---- 185 9.4.1 Limitations of numerical simulations — 185 9.4.2 Reconnection diffusion in circumstellar accretion disks — 187 9.5 Predictions and tests for reconnection diffusion — 188 9.5.1 Reconnection diffusion in interstellar diffuse gas ---- 188 9.5.2 Reconnection diffusion and extreme cases of star formation — 190 9.5.3 Intuitive understanding of reconnection diffusion ----- 191 9.5.4 Reconnection diffusion and alternative ideas ---- 192 9.5.5 Transport of heat in magnetized fluid — 194 9.5.6 MHD and plasma-based descriptions of reconnection diffusion ---- 199 10 Extracting properties of astrophysical turbulence from observations ---- 203 10.1 Studying turbulence with spectral lines — 204 Statistics of the PPV: velocity channel analysis and velocity coordinate 10.1.1 spectrum — 205 10.2 Synchrotron fluctuations — 219 10.2.1 Numerical testing of the synchrotron-based techniques and the application to observations — 225 10.3 Observational signatures of MHD turbulence modes — 226

10.3.1 Anisotropy arising from Alfvenic turbulence: obtaining magnetic field direction and M_{4} — 226 10.3.2 Contribution of different MHD turbulence modes ---- 227 10.4 Relation to CMB foreground studies ---- 228 10.4.1 Polarized CMB foreground — 228 10.4.2 MHD turbulence for foreground studies — 229 10.5 Gradient technique: utilizing the turbulence knowledge to study magnetic fields — 235 10.5.1 Velocity gradients ---- 235 10.5.2 Synchrotron intensity gradients ---- 239 10.5.3 Synchrotron polarization gradients ---- 240 10.5.4 Intensity gradients — 241 10.5.5 Dispersion of gradient directions: obtaining magnetization of the media — 243 10.5.6 Probing magnetic fields with different types of gradients ---- 244 10.6 Synergy of different approaches — 245

Bibliography ---- 247

Index — 269