Contents

1

	Prefac	Preface		
	Part l	Plası	na Physics Preliminaries	1
1	Intro	duction		3
	1.1	Motiva	tion	3
	1.2	Therm	onuclear fusion and plasma confinement	4
		1.2.1	Fusion reactions	4
		1.2.2	Conditions for fusion	6
		1.2.3	Magnetic confinement and tokamaks	9
	1.3	Astrop	hysical plasmas	11
		1.3.1	Celestial mechanics	11
		1.3.2	Astrophysics	13
		1.3.3	Plasmas enter the stage	15
		1.3.4	The standard view of nature	17
	1.4	Definit	tions of the plasma state	19
		1.4.1	Microscopic definition of plasma	19
		1.4.2	Macroscopic approach to plasma	23
	1.5	Literat	ure and exercises	24
2	Elem	ents of j	plasma physics	27
	2.1	Theore	etical models	27
	2.2	Single	particle motion	27
		2.2.1	Cyclotron motion	27
		2.2.2	Excursion: Basic equations of electrodynamics and mechanics	30
		2.2.3	Drifts, adiabatic invariants	33
	2.3	Kineti	c plasma theory	38
		2.3.1	Boltzmann equation and moment reduction	38
		2.3.2	Collective phenomena: plasma oscillations	43
		2.3.3	Landau damping	46
	2.4	Fluid o	description	52
		2.4.1	From the two-fluid to the MHD description of plasmas	53
		2.4.2	Alfvén waves	57
		2.4.3	Equilibrium and stability	59

	2.5	In conc	lusion	63
	2.6	Literatu	ure and exercises	64
3	'Deri	vation' c	of the macroscopic equations \star	66
U	3.1	Two ap	pproaches*	66
	3.2	Kinetic	equations*	67
	0.=	3.2.1	Boltzmann equation*	67
		3.2.2	Moments of the Boltzmann equation*	70
		3.2.3	Thermal fluctuations and transport*	72
		3.2.4	Collisions and closure*	75
	3.3	Two-flu	uid equations [*]	78
	• • •	3.3.1	Electron-ion plasma*	78
		3.3.2	The classical transport coefficients*	79
		3.3.3	Dissipative versus ideal fluids*	83
		3.3.4	Excursion: waves in two-fluid plasmas*	86
	3.4	One-flu	uid equations [*]	95
		3.4.1	Maximal ordering for MHD*	95
		3.4.2	Resistive and ideal MHD equations*	99
	3.5	Literat	ure and exercises*	101
	Part	II Bas	ic Magnetohydrodynamics	103
4	The	MHD m	odel	105
4		The id	eal MHD equations	105
	4.1	411	Postulating the basic equations	105
		412	Scale independence	110
		413	A crucial question	112
	42	Magne	etic flux	113
	1.2	421	Flux tubes	113
		4.2.2	Global magnetic flux conservation	114
	4.3	Conse	ervation laws	116
		4.3.1	Conservation form of the MHD equations	116
		4.3.2	Global conservation laws	118
		4.3.3	Local conservation of magnetic flux	121
		4.3.4	Magnetic helicity	124
	4.4	Dissir	bative magnetohydrodynamics	128
		4.4.1	Resistive MHD	128
		4.4.2	(Non-)conservation form of the dissipative equations \star	131
	4.5	Disco	ntinuities	133
		4.5.1	Shocks and jump conditions	133
		4.5.2	Boundary conditions for plasmas with an interface	136
	4.6	Mode	el problems	138
		4.6.1	Laboratory plasmas (models I–III)	138
		4.6.2	Energy conservation for interface plasmas	141
		4.6.3	Astrophysical plasmas (models IV-VI)	143

Contents

ix

4.7	Literature and exercises	144			
Wav	aves and characteristics				
5.1	Physics and accounting	147			
	5.1.1 Introduction	147			
	5.1.2 Sound waves	147			
5.2	MHD waves	150			
	5.2.1 Symmetric representation in primitive variables	150			
	5.2.2 Entropy wave and magnetic field constraint	152			
	5.2.3 Reduction to velocity representation: three waves	155			
	5.2.4 Dispersion diagrams	157			
5.3	Phase and group diagrams	159			
	5.3.1 Basic concepts	159			
	5.3.2 Application to the MHD waves	161			
	5.3.3 Asymptotic properties	165			
	5.3.4 Self-gravity and contraction in homogeneous media*	166			
5.4	Characteristics*	169			
	5.4.1 The method of characteristics*	169			
	5.4.2 Classification of partial differential equations*	171			
	5.4.3 Characteristics in ideal MHD*	173			
5.5	Literature and exercises	179			
Spec	Spectral theory				
6.1	Stability: intuitive approach	181			
	6.1.1 Two viewpoints	181			
	6.1.2 Linearization and Lagrangian reduction	183			
6.2	Force operator formalism	186			
	6.2.1 Equation of motion	186			
	6.2.2 Hilbert space	190			
	6.2.3 Proof of self-adjointness of the force operator	191			
6.3	Spectral alternatives*	196			
	6.3.1 Mathematical intermezzo*	196			
	6.3.2 Initial value problem in MHD*	198			
6.4	Quadratic forms and variational principles	200			
	6.4.1 Expressions for the potential energy	200			
	6.4.2 Hamilton's principle	202			
	6.4.3 Rayleigh–Ritz spectral variational principle	203			
	6.4.4 Energy principle	204			
6.5	Further spectral issues	206			
	6.5.1 Normal modes and the energy principle*	206			
	6.5.2 Proof of the energy principle*	207			
	6.5.3 σ -stability	209			
	6.5.4 Returning to the two viewpoints	210			
6.6	Extension to interface plasmas	213			
	6.6.1 Boundary conditions at the interface	215			

Х

		6.6.2	Self-adjointness for interface plasmas	218
		6.6.3	Extended variational principles	219
		6.6.4	Application to the Rayleigh–Taylor instability	221
	6.7	Literat	ture and exercises	229
	Part	III Sta	andard Model Applications	231
7	Wav	es and ir	nstabilities of inhomogeneous plasmas	233
	7.1	Hydro	dynamics of the solar interior	233
		7.1.1	Radiative equilibrium model	234
		7.1.2	Convection zone	237
	7.2	Hydro	dynamic waves and instabilities of a gravitating slab	239
		7.2.1	Hydrodynamic wave equation	239
		7.2.2	Convective instabilities	241
		7.2.3	Gravito-acoustic waves	242
		7.2.4	Helioseismology and MHD spectroscopy	245
	7.3	MHD	wave equation for a gravitating magnetized plasma slab	248
		7.3.1	Preliminaries	248
		7.3.2	MHD wave equation for a gravitating slab	252
		7.3.3	Gravito-MHD waves	258
	7.4	Contin	nuous spectrum and spectral structure	265
		7.4.1	Singular differential equations	265
		7.4.2	Alfvén and slow continua	269
		7.4.3	Oscillation theorems	273
		7.4.4	Cluster spectra*	278
	7.5	Gravit	ational instabilities of a magnetized plasma slab	279
		7.5.1	Energy principle for a gravitating plasma slab	280
		7.5.2	Interchanges in shearless magnetic fields	283
		7.5.3	Interchange instabilities in sheared magnetic fields	285
	7.6	Literat	ture and exercises	289
8	Mag	gnetic str	ructures and dynamics of the solar system	292
	8.1	Plasm	a dynamics in laboratory and nature	292
	8.2	Solar	magnetism	293
		8.2.1	The solar cycle	294
		8.2.2	Magnetic structures in the solar atmosphere	300
		8.2.3	Inspiration from solar magnetism	309
		8.2.4	Solar wind and heliosphere	309
	8.3	Space	weather	313
		8.3.1	Technological and economic implications	313
		8.3.2	Coronal mass ejections	314
		8.3.3	Numerical modelling of space weather	317
		8.3.4	Solar wind and planetary magnetospheres	320
	8.4	Perspe	ective	321
	8.5	Litera	ture and exercises	322

Contents

xi

Cylin	indrical plasmas			
9.1	Equilibrium of cylindrical plasmas	325		
	9.1.1 Diffuse plasmas	325		
	9.1.2 Interface plasmas	329		
9.2	MHD wave equation for cylindrical plasmas	330		
	9.2.1 Derivation of the MHD wave equation for a cylinder	330		
	9.2.2 Boundary conditions for cylindrical interfaces	336		
9.3	Spectral structure	339		
	9.3.1 One-dimensional inhomogeneity	339		
	9.3.2 Cylindrical model problems	341		
	9.3.3 Cluster spectra*	347		
9.4	Stability of cylindrical plasmas	348		
	9.4.1 Oscillation theorems for stability	348		
	9.4.2 Stability of plasmas with shearless magnetic fields	353		
	9.4.3 Stability of force-free magnetic fields*	357		
	9.4.4 Stability of the 'straight tokamak'	361		
9.5	Literature and exercises	369		
Initia	I value problem and wave damping *	372		
10.1	10.1 Implications of the continuous spectrum*			
10.2	Initial value problem*	373		
	10.2.1 Reduction to a one-dimensional representation*	373		
	10.2.2 Restoring the three-dimensional picture*	376		
10.3	Damping of Alfvén waves [*]	380		
	10.3.1 Green's function*	381		
	10.3.2 Spectral cuts*	384		
10.4	Quasi-modes*	386		
10.5	Leaky modes [*]	392		
10.6	Literature and exercises*	397		
Reso	nant absorption and wave heating	399		
11.1	Ideal MHD theory of resonant absorption	399		
	11.1.1 Analytical solution of a simple model problem	399		
	11.1.2 Role of the singularity	405		
	11.1.3 Resonant 'absorption' versus resonant 'dissipation'	414		
11.2	Heating and wave damping in tokamaks and coronal loops	417		
	11.2.1 Tokamaks	417		
	11.2.2 Coronal loops and arcades	418		
	11.2.3 Numerical analysis of resonant absorption	419		
11.3	Alternative excitation mechanisms	423		
	11.3.1 Foot point driving	424		
	11.3.2 Phase mixing	427		
	11.3.3 Applications to solar and magnetospheric plasmas	428		
11.4	Literature and exercises	432		

xii

	Part I	V Flow and Dissipation	435
12	Wave	s and instabilities of stationary plasmas	437
	12.1	Laboratory and astrophysical plasmas	437
		12.1.1 Grand vision: magnetized plasma on all scales!	437
		12.1.2 Laboratory and astrophysical plasmas	440
		12.1.3 Interchanges and the Parker instability	441
	12.2	Spectral theory of stationary plasmas	445
		12.2.1 Plasmas with background flow	445
		12.2.2 Frieman–Rotenberg formulation	448
		12.2.3 Self-adjointness of the generalized force operator*	453
		12.2.4 Energy conservation and stability	456
	12.3	The Spectral Web	462
		12.3.1 Opening up the boundaries	462
		12.3.2 Oscillation theorems in the complex plane	466
	12.4	Literature and exercises	471
13	Shear	r flow and rotation	473
	13.1	Spectral theory of plane plasmas with shear flow	473
		13.1.1 Gravito-MHD wave equation for plane plasma flow	473
		13.1.2 Kelvin–Helmholtz instabilities in interface plasmas	478
		13.1.3 Continua and the real oscillation theorem	480
		13.1.4 Spectral Web and the complex oscillation theorem	484
	13.2	Analysis of flow-driven instabilities in plane plasmas	486
		13.2.1 Rayleigh–Taylor instabilities of magnetized plasmas	488
		13.2.2 Kelvin–Helmholtz instabilities of ordinary fluids	489
		13.2.3 Combined instabilities of magnetized plasmas	494
	13.3	Spectral theory of rotating plasmas	498
		13.3.1 MHD wave equation for cylindrical flow in 3D	498
		13.3.2 Reduction to a second order differential equation	500
		13.3.3 Singular expansions*	502
		13.3.4 Doppler–Coriolis shift and solution path	505
	13.4	Rayleigh–Taylor instabilities in rotating theta-pinches	506
		13.4.1 Hydrodynamic modes ($k = 0$)	507
		13.4.2 Magnetohydrodynamic modifications ($k \neq 0$)	511
	13.5	Magneto-rotational instability in accretion discs	513
		13.5.1 Analytical preliminaries	514
		13.5.2 Numerical Spectral Web solutions	518
	13.6	Literature and exercises	523
14	Resis	stive plasma dynamics	525
	14.1	Plasmas with dissipation	525
		14.1.1 Conservative versus dissipative dynamical systems	525
		14.1.2 Stability of force-free magnetic fields: a trap	525
	14.2	Resistive instabilities	532
		14.2.1 Basic equations	532

xiii

	14.2.2	Tearing modes	534
	14.2.3	Resistive interchange modes	543
14.3	Resistiv	544	
	14.3.1	Resistive wall mode	544
	14.3.2	Spectrum of homogeneous plasma	548
	14.3.3	Spectrum of inhomogeneous plasma	551
14.4	Reconn	nection	554
	14.4.1	Reconnection in a 2D Harris sheet	554
	14.4.2	Petschek reconnection	558
	14.4.3	Kelvin-Helmholtz induced tearing instabilities	559
	14.4.4	Extended MHD and reconnection	560
14.5	Excursi	ion: Hall-MHD wave diagrams	563
14.6	Literatu	ure and exercises	566
Comj	putation	al linear MHD	569
15.1	Spatial	discretization techniques	569
	15.1.1	Basic concepts for discrete representations	571
	15.1.2	Finite difference methods	572
	15.1.3	Finite element method	576
	15.1.4	Spectral methods	583
	15.1.5	Mixed representations	586
15.2	Linear	MHD: boundary value problems	588
	15.2.1	Linearized MHD equations	589
	15.2.2	Steady solutions to linearly driven problems	590
	15.2.3	MHD eigenvalue problems	593
	15.2.4	Extended MHD examples	594
15.3	Linear	MHD: initial value problems	599
	15.3.1	Temporal discretizations: explicit methods	599
	15.3.2	Disparateness of MHD time scales	606
	15.3.3	Temporal discretizations: implicit methods	606
	15.3.4	Applications: linear MHD evolutions	608
15.4	Conclu	ding remarks	612
15.5	Literatu	ure and exercises	612
Part '	V Toro	pidal Geometry	615
Static	r equilib	rium of toroidal plasmas	617
1 6 .1	Axi-svi	mmetric equilibrium	617
	16.1.1	Equilibrium in tokamaks	617
	16.1.2	Magnetic field geometry	621
	16.1.3	Cylindrical limits	624
	16.1.4	Global confinement and parameters	627
16.2	Grad-S	Shafranov equation	635
	16.2.1	Derivation of the Grad–Shafranov equation	635
	16.2.2	Large aspect ratio expansion: internal solution	637

xiv

		16.2.3	Large aspect ratio expansion: external solution	642
	16.3	Exact e	quilibrium solutions	647
		16.3.1	Poloidal flux scaling	647
		16.3.2	Soloviev equilibrium	652
		16.3.3	Numerical equilibria*	655
	16.4	Extensi	ons	660
		16.4.1	Toroidal rotation	660
		16.4.2	Gravitating plasma equilibria*	662
		16.4.3	Challenges	663
	16.5	Literatu	ire and exercises	664
17	Linea	ar dynam	nics of static toroidal plasmas	667
	17.1	"Ad mo	pre geometrico"	667
		17.1.1	Alfvén wave dynamics in toroidal geometry	667
		17.1.2	Coordinates and mapping	667
		17.1.3	Geometrical-physical characteristics	668
	17.2	Analysi	s of waves and instabilities in toroidal geometry	674
		17.2.1	Spectral wave equation	674
		17.2.2	Spectral variational principle	676
		17.2.3	Alfvén and slow continuum modes	677
		17.2.4	Poloidal mode coupling	680
		17.2.5	Alfvén and slow ballooning modes	683
	17.3	Compu	tation of waves and instabilities in tokamaks	690
		17.3.1	Ideal MHD versus resistive MHD in computations	690
		17.3.2	Internal modes	695
		17.3.3	Edge localized modes	697
		17.3.4	Toroidal Alfvén eigenmodes and MHD spectroscopy	701
	17.4	Literatu	ire and exercises	704
18	Linea	ar dynan	nics of toroidal plasmas with flow *	707
	18.1	Transor	nic toroidal plasmas	707
	18.2	Axi-syr	nmetric equilibrium of transonic stationary states*	709
		18.2.1	Equilibrium flux functions*	709
		18.2.2	Equilibrium variational principle and rescaling*	712
		18.2.3	Elliptic and hyperbolic flow regimes*	715
		18.2.4	Expansion of the equilibrium in small toroidicity*	716
	18.3	Equatio	ons for the continuous spectrum*	722
		18.3.1	Reduction for straight-field-line coordinates*	722
		18.3.2	Continua of poloidally and toroidally rotating plasmas *	725
		18.3.3	Analysis of trans-slow continua for small toroidicity \star	731
	18.4	Trans-s	low continua in tokamaks and accretion discs ^{\star}	737
		18.4.1	Tokamaks and magnetically dominated accretion discs*	738
		18.4.2	Gravity dominated accretion discs*	740
		18.4.3	Trans-slow Alfvén continuum instabilities	742
	18.5	Literatu	ire and exercises*	744

xv

Part	VI No	nlinear Dynamics	747
Turb	ulence i	n incompressible magneto-fluids	749
19.1	Incom	pressible hydrodynamics preliminaries	749
	19.1.1	The incompressible hydro model	749
	19.1.2	Two-dimensional formulations	751
	19.1.3	'Wave' analysis for incompressible Euler	751
	19.1.4	Energy equation and Kolmogorov scaling	753
	19.1.5	Selected numerical examples	756
19.2	Incom	pressible magnetohydrodynamics	758
	19.2.1	Governing equations	758
	19.2.2	Elsässer formulation	759
	19.2.3	Kinematic MHD modelling	760
	19.2.4	Dynamo aspects	761
19.3	Waves	in incompressible MHD	764
	19.3.1	Linear wave analysis	765
	19.3.2	Nonlinear wave solutions and conservation laws	766
	19.3.3	MHD turbulence scaling laws	768
19.4	Incom	pressible MHD simulations	771
	19.4.1	Structure formation in incompressible MHD studies	772
	19.4.2	Dynamo aspects continued	774
19.5	Extens	ion to compressible MHD and concluding remarks	776
19.6	Literat	ure and exercises	778
Com	putation	al nonlinear MHD	780
20.1	Genera	l considerations for nonlinear conservation laws	780
	20.1.1	Conservative versus primitive variable formulations	780
	20.1.2	Scalar conservation law and the Riemann problem	786
	20.1.3	Numerical discretizations for scalar conservation	790
	20.1.4	Finite volume treatments	796
20.2	Upwin	d-like finite volume treatments for one-dimensional MHD	797
	20.2.1	The Godunov method	798
	20.2.2	A robust shock-capturing method: TVDLF	802
	20.2.3	Approximate Riemann solver schemes	807
	20.2.4	Simulating 1D MHD Riemann problems	811
20.3	Multi-c	limensional MHD computations	813
	20.3.1	$\nabla \cdot \mathbf{B} = 0$ condition for shock-capturing schemes	814
	20.3.2	Example nonlinear MHD scenarios	819
	20.3.3	Alternative numerical methods	822
20.4	Implici	t approaches for extended MHD simulations	827
	20.4.1	Semi-implicit methods	828
	20.4.2	Simulating ideal and resistive instabilities	832
	20.4.3	Global simulations for tokamak plasmas	833
20.5	Literatu	ure and exercises	834

21	Tran	sonic MHD flows and shocks	837
	21.1	Transonic flows	837
		21.1.1 Characteristics and shocks	838
		21.1.2 Gas dynamic shocks	840
		21.1.3 Misnomers	845
	21.2	MHD shock conditions	846
		21.2.1 MHD discontinuities without mass flow	846
		21.2.2 MHD discontinuities with mass flow	848
		21.2.3 Slow, intermediate and fast shocks	852
	21.3	Advanced classification of MHD shocks	854
		21.3.1 Distilled shock conditions	854
		21.3.2 Time reversal duality	859
		21.3.3 Angular dependence of MHD shocks*	865
		21.3.4 Observational considerations of MHD shocks	870
	21.4	Example astrophysical transonic flows	871
	21.5	Literature and exercises	876
22	Ideal	MHD in special relativity	879
	22.1	Four-dimensional space-time: special relativistic concepts	879
		22.1.1 Space-time coordinates and Lorentz transformations	880
		22.1.2 Four-vectors in flat space-time and invariants	882
		22.1.3 Relativistic gas dynamics and stress-energy tensor	885
		22.1.4 Sound waves and shock relations in relativistic gases	889
	22.2	Electromagnetism and special relativistic MHD	895
		22.2.1 Electromagnetic field tensor and Maxwell's equations	895
		22.2.2 Ideal MHD in special relativity	900
		22.2.3 Wave dynamics in a homogeneous plasma	902
		22.2.4 Shock conditions in relativistic MHD	906
	22.3	Computing relativistic magnetized plasma dynamics	908
		22.3.1 Numerical challenges from relativistic MHD	910
		22.3.2 Pulsar Wind Nebulae modelling	911
	22.4	Outlook: General relativistic MHD simulations	915
	22.5	Literature and exercises	916
	Appe	ndices	919
A	Vecto	ors and coordinates	919
	A .1	Vector identities	919
	A.2	Vector expressions in orthogonal coordinates	920
	A.3	Vector expressions in non-orthogonal coordinates	
В	Table	es of physical quantities	
	Refer	ences	937
	Index		964