Contents

10.000

1			lodes of Maxwell's Equations	1
	Ben	Hourahi	ine, Duncan McArthur and Francesco Papoff	
	1.1	Introdu	lection	1
	1.2	Princip	al Modes of Single Particles	2
	1.3	Optical	Resonances of Single Particles	10
		1.3.1	Gold Nanorods	10
		1.3.2	Supershapes	14
		1.3.3	Scanning Near-Field Optical Microscopy of Gold	
			Nanodiscs	16
	1.4	Cohere	ent Control	17
		1.4.1	Elastic Scattering	18
		1.4.2	Inelastic Scattering: Multiphoton Processes	21
	1.5	Supern	nodes of Multiple Particles	24
	1.6		ision	28
	1.7	Appen	dix	29
	Refe			31
2	The	Invaria	ant Imbedding T Matrix Approach	35
			cu and Thomas Wriedt	
	2.1	Introdu	uction	35
	2.2		matical Foundations	36
		2.2.1	The Volume Integral Equation in	
			Spherical Coordinates	36
		2.2.2	An Ordinary Integral Equation	38
		2.2.3	The Matrix Riccati Equation	39
		2.2.4	A Recurrence Relation for the T matrix	41
		2.2.5	An Integral-Matrix Approach	43
	2.3	Concl	usions	47
	Ref	erences		47

Contents

3		hods for Electromagnetic Scattering by Large Axisymmetric	
		icles with Extreme Geometries	49
	Adri	an Doicu, Yuri Eremin, Dmitry S. Efremenko	
		Thomas Trautmann	
	3.1	Introduction	49
	3.2	Discrete Sources	50
		3.2.1 Discrete Sources Method for the Transmission	
		Boundary-Value Problem	52
		3.2.2 Null-Field Method with Discrete Sources for the	
		Transmission Boundary-Value Problem	53
		3.2.3 Algorithm Details	54
		3.2.4 Convergence Analysis	56
	3.3	An Analytical Method for Computing the Q-Matrix Elements	61
	3.4	Conclusions	68
	Refe	erences	68
4	Ficti	itious Particle Approach for Light Scattering Investigation	
-		n the Line Features of a Substrate Based on the Discrete	
		rces Method	71
	Yuri	Eremin and Thomas Wriedt	
	4.1	Introduction	71
	4.2	Discrete Sources Method for Non-axial Symmetric Case	74
	4.3	Numerical Scheme of the DSM	79
	4.4	Simulation Results	87
	4.5	Conclusion	-90
	Refe	erences	90
5	Con	vergent Fields Generated by Divergent Currents in the	
		hod of Auxiliary Sources	93
		rge Fikioris and Nikolaos L. Tsitsas	
	5.1	Introduction	93
	5.2	Description of the Scattering Problem and Exact Solution	97
	5.3	Application of the MAS to the Scattering Problem	100
		5.3.1 MAS Currents and Their Large-N Limit	100
		5.3.2 Large-N Limit of MAS Field	103
		5.3.3 Continuous Version of MAS	105
		5.3.4 More on the Nonsolvable Case; Oscillations, Roundoff,	
		and Internal Resonances	106
		5.3.5 Asymptotic Formula for the Oscillating MAS Currents	107
		5.3.6 Analogies with Superdirectivity	108
	5.4	Comparisons with the Extended Integral Equation (EIE)	108
		5.4.1 Solvability of the EIE	109
		5.4.2 Discretization of the EIE	111
		5.4.3 Analytic Continuation of the Scattered Field	112

		5.4.4	More on the Effects of Roundoff; Relevance to More	114
	~ ~	0.1	Complicated Problems	114
	5.5		d Conclusions; Additional Remarks	115
				117
6			lation of Plasmonic Particles on Substrate Under	
			imination	121
			lens Niegemann, Christian Hafner and Juerg Leuthold	
	6.1		uction	122
	6.2		c MMP Simulation	123
	6.3	-	s in Layered Media	124
		6.3.1	Layered Media	125
		6.3.2	Layered Dipole	128
	6.4		n Energy Loss Spectroscopy	133
		6.4.1	Electron Beam Expansion	133
		6.4.2	Electron Energy Loss Computation	134
	6.5		ical Experiments	134
		6.5.1	Plane Wave Excitation of a Dielectric Sphere	135
		6.5.2	Properties of Mesh-Based MMP	135
		6.5.3	Electron Energy Loss Spectroscopy of a Plasmonic	
			Split-Ring Resonator in Free Space	139
		6.5.4	Electron Energy Loss Spectroscopy of a Plasmonic	
			Disk-Dimer on a Membrane	140
		6.5.5	Comparison of MMP and DGTD for Electron Energy	
			Loss Spectroscopy Calculations	141
	6.6		ary and Outlook	143
	Refe	rences		144
7	The	Genera	lized Multipole Technique for the Simulation	
	of L	ow-Los	s Electron Energy Loss Spectroscopy	147
	Lars	Kiewid	t and Mirza Karamehmedović	
	7.1	Introdu	ction to Generalized Multipole Techniques and Their Use	
		in the	Simulation of EELS	147
	7.2	The Cl	assical Electromagnetic Model and the Computation of the	
			n Energy Loss Probability	148
	7.3	Implen	nentation of the GMT to Compute Low-Loss EELS	151
		7.3.1	The Electromagnetic Model	151
		7.3.2	Computation of the Electromagnetic Fields Using	
			the GMT	153
	7.4	Validat	tion and Numerical Results	157
		7.4.1	Electromagnetic Scattering of Spheroidal Dielectric	
			Nanoparticles	157
		7.4.2	Low-Loss EEL Spectra of Spherical Dielectric	
			Nanoparticles	158

х

Contents

		7.4.3	Low-Loss EEL Spectra of Spheroidal Nanoparticles	160
	7.5	Summ	ary and Conclusions	165
	Refe	rences		165
8	Intro	oductio	n to Yasuura's Method of Modal Expansion with	
U			to Grating Problems	169
			ushima, Toyonori Matsuda and Yoichi Okuno	107
	8.1	Introd		170
	8.2		ra's Method of Modal Expansion	171
		8.2.1	Scattering by a Perfectly-Conducting Cylinder	171
		8.2.2	Modal Functions, Approximate Solution, and	
			Least-Squares Boundary Matching	173
		8.2.3	Method of Numerical Solution	177
		8.2.4	Application to Dielectric or Metal Obstacles	182
		8.2.5	Application to Gratings	186
	8.3	Nume	rical Examples	190
		8.3.1	Rule on the Number of Sampling Points	190
		8.3.2	Scattering by Relatively Deep Gratings	194
		8.3.3	Plasmon Surface Waves Excited on a Metal Grating	
			Placed in Conical Mounting	197
		8.3.4	Scattering by a Metal Bigrating	200
		8.3.5	Scattering by Periodically Located Spheres	205
	8.4	Conclu	usions	208
	Refe	rences	· · · · · · · · · · · · · · · · · · ·	218
9	Pole	Locati	on in GMT	221
	Jame	es E. Ri		
	9.1		uction: GMT and Its Variations	221
	9.2		nent Rules Developed and Utilized	223
		9.2.1	Automatic and Semi-automatic Pole Placement	
			Approaches	225
		9.2.2	Singularities of the Scattered Field	226
			e	
		9.2.3	Summary Comments	228
	9.3	9.2.3 Conve	Summary Comments	228 228
	9.3	9.2.3	Summary Comments	228
	9.3	9.2.3 Conve 9.3.1	Summary Comments	228 228
	9.3	9.2.3 Conve 9.3.1 9.3.2	Summary Comments	228 228 229
		9.2.3 Conve 9.3.1 9.3.2 9.3.3	Summary Comments	228 228 229 230
	9.3 9.4	9.2.3 Conve 9.3.1 9.3.2 9.3.3 Effecti	Summary Comments	228 228 229 230 231
		9.2.3 Conve 9.3.1 9.3.2 9.3.3 Effecti 9.4.1	Summary Comments	228 228 229 230 231 231
		9.2.3 Conve 9.3.1 9.3.2 9.3.3 Effecti 9.4.1 9.4.2	Summary Comments ergence and Error Analysis in MAS MAS Convergence Analysis: Monopole Line Source Incident Field MAS Accuracy Analysis: Plane Wave Incident Field Summary Comments vive Spatial Bandwidth Introduction Theoretical Development of EBW	228 228 229 230 231 231 233
		9.2.3 Conve 9.3.1 9.3.2 9.3.3 Effecti 9.4.1 9.4.2 9.4.3	Summary Comments	228 228 229 230 231 231 233 235
		9.2.3 Conve 9.3.1 9.3.2 9.3.3 Effecti 9.4.1 9.4.2	Summary Comments ergence and Error Analysis in MAS MAS Convergence Analysis: Monopole Line Source Incident Field MAS Accuracy Analysis: Plane Wave Incident Field Summary Comments vive Spatial Bandwidth Introduction Theoretical Development of EBW	228 228 229 230 231 231 233

9.5	Effective Spatial Bandwidth for Non-circular Cylinders 9.5.1 Introduction	
	9.5.2 Scattering from a Perfectly Conducting Elliptical	
	Cylinder	
9.6	Conclusions	
Refe	rences	
dex .		

xi