Contents

Prefac	\mathbf{e}		\mathbf{v}
Chapte	er 1. N	Metals and Nonmetals	1
1.1	The 'r	macroscopic' and 'microscopic' world	1
	1.1.1	Three stages of the 'microscopic' world	1
	1.1.2	Condensed matter physics	2
	1.1.3	${\it Macroscopic}$ measurements	3
	1.1.4	Electric conductivity as a probe to analyze the	
		microscopic world	3
1.2	The n	nagnitude of electric conductivity and resistivity	5
	1.2.1	Metals	7
	1.2.2	Insulators	7
	1.2.3	Semimetals	8
	1.2.4	Semiconductors	8
1.3	Existe	ence of free electrons	8
	1.3.1	What indeed is a metal?	9
	1.3.2	What kinds of materials belong to the group of	
		metals?	12
	1.3.3	Characteristic features of metals	15
Chapte	er 2.]	Electron Theory of Metals and The Band	ì
_	eory	·	17
2.1	The D	Orude theory of electrons	17
	2.1.1	Number of 'free electrons'	18
	2.1.2	Electric conductivity of direct current	19
	2.1.3	The Hall coefficient	22
	2.1.4	Electric conductivity of alternating current	24
2.2	Fermi	Gas	28
	2.2.1	The Fermi-Dirac Distribution	28
	2.2.2	The Boltzmann equation	32

	2.2.3	Conditions that a material be a metal.	35	Chapter 4. Bloch-Wilson Transition Type I: Metal-	
2.3	The b	and theory	37	Nonmetal Transition due to the Band Overlap – Part	
	2.3.1	The Bloch electrons	37		0
	2.3.2	Demonstration of the Schrödinger equation in		1	0.
		terms of the reciprocal lattice vectors.	38	1 0	0
	2.3.3	Energy bands	41	4.1.2 The tight-binding approximation — derivation	
	2.3.4	Effective mass	45		1
2.4	The te	emperature dependence of electric resistivity of a		4.1.3 One-dimensional and three-dimensional crystals 1	
	metal.	- · · · · · · · · · · · · · · · · · · ·	47	9	120
	2.4.1	Evaluation of the temperature dependence	47	3,	2
	2.4.2	Comparison between a metal and a nonmetal	51		123
	2.4.3	Discontinuity of the electric resistance at the		V 1	133
		melting point	51	1 1	13
2.5	Metal-	-nonmetal transitions	53		4
~• .					15
_		Peierls Transition: Metal-Nonmetal Transi-		4.2.4 Mercury 1	6
		to the Change of Periodicity	59	Chapter 5. Bloch-Wilson Transition Type II: Metal-	
3.1		happens when the periodicity of a crystal changes?		Nonmetal Transition due to the Band Overlap – Part	
	3.1.1	The case in which the periodicity is doubled.	60	2	69
	3.1.2	The case in which the periodicity is tripled and	o -		169
0.0	- ·	the cases for the other periodicity.	65	5.1.1 The level difference $\Delta \varepsilon_{\mu+1,\mu}$ – both (1) when	
3.2		ty response function	66	$\Delta \varepsilon_{\mu+1,\mu}$ is nearly constant and (2) when it is	
	3.2.1	Derivation of the density auto-correlation func-			16
		tion	68	3,	17
	3.2.2	The density auto-correlation function at the ab-		5.1.3 The difference of levels depends on the inter-	_
		solute zero.	70		17:
	3.2.3	Influence of the finite temperature	73	01	170
3.3	Order	parameter	76	0 1	170
	3.3.1	The total energy of a one-dimensional system		<u>.</u>	Ι7 ⁴
		at the absolute zero.	77	5.2.3 Se at high temperature and pressure	19
	3.3.2	The width of the energy gap at the absolute zero.	80	Chapter 6. Anderson Transition: Metal-Nonmetal Tran-	
	3.3.3	The gap equation	82	<u>-</u>	0
3.4	Peierls	s transition in realistic materials	88	6.1 The Anderson localization	20
	3.4.1	Peierls insulator	88	6.1.1 The absence of diffusion in certain random lattices?	20
	3.4.2	Charge density wave	93	6.1.2 The tight-binding representation	20
		C 1:1:4	0.5	0 0 1	20
	3.4.3	Commensurability	97	6.1.3 The theory of the Anderson localization	20
	3.4.3 3.4.4	Electric conduction in TTF-TCNQ	97 98	· ·	20 21

	6.2.2 Theory of the renormalization group	220			
6.3	The mobility edge	224			
	6.3.1 Metal-nonmetal transition	224			
	6.3.2 The critical exponent	228			
6.4	The concept of the Anderson localization	231			
Chapt	er 7. Mott Transition: Metal-Nonmetal Trans	si-			
tior	due to Electron Correlation	233			
7.1	A system with a partially-filled band	233			
7.2	The Hubbard theory	238			
7.3	Strongly-correlated electron systems	243			
	7.3.1 The phase diagrams on the $(x_e, 2\mathcal{V}/\mathcal{I})$ plane				
	and on the $(x_{\rm h}, 2\mathcal{V}/\mathcal{I})$ plane	243			
	7.3.2 The phase diagrams on the (x_h, T) plane	245			
	7.3.3 The conditions for the occurrence of the Mott		1		
	insulator-to-metal transition	246			
7.4	The Mott transition and the Anderson localization	248			
7.5	Fluids under high temperature and high pressure	253			
Chapt	er 8. Postscript	257			
Chapt	er 9. Appendices	261			
$\overline{\mathbf{A}}$	The reciprocal lattice	261			
В	Metal-nonmetal transition by the percolation mechanis	sm 264			
\mathbf{C}	The evaluation of the density auto-correlation function				
	at the absolute zero temperature	271			
D	Evaluation of the integrals used in the discussion of the	}	y		
	Peierls transition	277			
\mathbf{E}	The primitive vectors and other properties in 1D and				
	3D crystals	287			
F	Electronic energy in the tight-binding approximation	292			
3iblio:	graphy	297			
	- · ·				