Contents

Preface to the Second Edition	page xv
Preface to the First Edition	
PART I FROM MAXWELL'S EQUATIONS TO	
MAGNETOHYDRODYNAMICS	1
1 A Qualitative Overview of MHD	3
1.1 What Is MHD?	3
1.2 A Brief History of MHD	6
1.3 From Electrodynamics to MHD: A Simple Experiment	7
1.3.1 Some Important Parameters in Electrodynamics	
and MHD	8
1.3.2 Electromagnetism Remembered	8
1.3.3 A Familiar High School Experiment	11
1.4 A Glimpse at the Astrophysical and Terrestrial Applications	
of MHD	17
Exercises	24
2 The Governing Equations of Electrodynamics	27
2.1 The Electric Field and the Lorentz Force	27
2.2 Ohm's Law and the Volumetric Lorentz Force	29
2.3 Ampère's Law and the Biot–Savart Law	31
2.4 Faraday's Law and the Vector Potential	34
2.5 An Historical Aside: Faraday and the Concept of the Field	37
2.6 Maxwell's Equations	40
2.6.1 The Displacement Current and Electromagnetic Wave	s 41
2.6.2 Gauges, Retarded Potentials and the Biot-Savart Law	
Revisited	43
2.7 The Reduced Form of Maxwell's Equations for MHD	47
2.8 A Transport Equation for the Magnetic Field	49

	2.9	A Seco	ond Look at Faraday's Law	49
		2.9.1	An Important Kinematic Equation	50
		2.9.2	The Full Significance of Faraday's Law	51
		2.9.3	Faraday's Law in Ideal Conductors: Alfvén's Theorem	53
		Exerci	ses	56
3	A F	irst Co	urse in Fluid Dynamics	57
	3.1	Differ	ent Categories of Fluid Flow	57
		3.1.1	Viscosity, the Reynolds Number and Boundary Layers	58
		3.1.2	Laminar Versus Turbulent Flow	62
		3.1.3	Rotational Versus Irrotational flow	65
	3.2	The N	avier-Stokes Equation	69
	3.3	Vortic	ity, Angular Momentum, and the Biot-Savart Law	70
	3.4	The V	orticity Equation and Vortex Line Stretching	74
	3.5	Invise	id Flow	80
		3.5.1	Kelvin's Theorem	80
		3.5.2	Helmholtz's Laws	81
		3.5.3	Helicity Conservation	83
	3.6	Visco	us Flow	85
		3.6.1	The Dissipation of Energy	85
		3.6.2	The Burgers Vortex	86
		3.6.3	The Prandtl–Batchelor Theorem	88
	3.7	Boun	dary Layers, Reynolds Stresses and Elementary Turbulence	
		Mc	odels	91
		3.7.1	Boundary Layers	91
		3.7.2	Turbulence and Simple Turbulence Models	93
	3.8	Ekma	n Layers and Ekman Pumping in Rotating Fluids	98
	3.9	Wave	s and Columnar Vortices in Rotating Fluids	101
		3.9.1	The Taylor–Proudman Theorem	102
		3.9.2	Inertial Waves, Helicity Transport and the Formation of	
			Taylor Columns	103
		3.9.3	Inertial Wave Packets, Columnar Vortices and Transient	
			Taylor Columns	106
		3.9.4	A Glimpse at Rapidly Rotating Turbulence	109
		Exerc	cises	110
4	Th	e Gove	rning Equations of MHD	112
	4.1	The l	MHD Equations and Key Dimensionless Groups	112
	4.2	Energ	gy Considerations	116
	4.3	Maxy	well's Stresses and Faraday's Tension	117
	4.4	A Gl	impse at Alfvén Waves	120

Contents

ix

PAR	ΤII	THE	FUNDAMENTALS OF INCOMPRESSIBLE MHD	121
5	Kin	ematic	s: Advection, Diffusion and Intensification of Magnetic	
	F	ields	_	123
	5.1	The A	nalogy to Vorticity	123
	5.2	Diffus	sion of a Magnetic Field	124
	5.3	Advec	ction in Ideal Conductors: Alfvén's Theorem	125
		5.3.1	Alfvén's Theorem	125
		5.3.2	An Aside: Sunspots	126
	5.4	Helici	ty Invariants in Ideal MHD	128
		5.4.1	Magnetic Helicity	128
		5.4.2	Minimum Energy states	130
		5.4.3	Cross Helicity	131
	5.5	Advec	ction Plus Diffusion	131
		5.5.1	Field Sweeping	132
		5.5.2	Flux Expulsion	133
		5.5.3	Azimuthal Field Generation by Differential Rotation:	
			The Ω -Effect	136
		5.5.4	Stretched Flux Tubes and Current Sheets	137
		5.5.5	Magnetic Reconnection	139
	5.6	Field	Generation by Flux-Tube Stretching: A Glimpse at Dynamo	
		The	eory	141
		Exerc	ises	142
6	Dyn	amics	at Low Magnetic Reynolds Numbers	144
	6.1	The L	ow Magnetic Reynolds Number Approximation	145
	6.2	The S	uppression of Motion	146
		6.2.1	Magnetic Damping	146
		6.2.2	The Damping of a Two-Dimensional Jet	148
		6.2.3	The Damping of a Vortex	149
		6.2.4	The Damping of Turbulence at Low R_m	155
		6.2.5	Natural Convection in a Magnetic Field: Rayleigh-Bénard	
			Convection	159
	6.3	An As	side: A Glimpse at the Damping of Turbulence at	
		Arb	pitrary R_m	165
	6.4	The G	eneration of Motion	168
		6.4.1	Rotating Fields and Swirling Motion	168
		6.4.2	Swirling Flow Induced between Two Parallel Plates	171
		6.4.3	Flows Resulting from Current Injection	174
	6.5	Bound	lary Layers and Associated Duct Flows	178
		6.5.1	Hartmann Boundary Layers	178

х

		6.5.2 Pumps, Propulsion and Projectiles		181
		Exercises		183
7	Dyn	namics at High Magnetic Reynolds Numbers		185
	7.1	Alfvén Waves and Elsasser Variables		187
	7.2	Finite-Amplitude Alfvén Waves and the Cons	servation of Cross	
		Helicity		190
	7.3	Colliding Alfvén Wave Packets and a Glimps	e at Alfvénic	
		Turbulence		192
	7.4	Magnetostrophic Waves		195
	7.5	The Energy Principle for Magnetostatic Equi	libria in Ideal	
		Fluids		197
		7.5.1 The Need for Stability in Plasma Conf	inement	198
		7.5.2 The Stability of Static Equilibria: A Va	ariational Approach	201
		7.5.3 The Stability of Static Equilibria: A D	irect Attack	206
	7.6	An Energy-Based Stability Theorem for Non	-Static Equilibria	209
	7.7	The Chandrasekhar–Velikhov Instability in R	otating MHD	215
		7.7.1 The Magnetic Destabilisation of Rotat	ting Flow	216
		7.7.2 The Energy Principle Applied to Rota	ting MHD	220
		7.7.3 The Destabilising Influence of an Azi	muthal Field	222
		7.7.4 The Destabilising Influence of an Axi	al Field	223
	7.8	8 From MHD to Euler Flows: The Kelvin–Arn	old Theorem	224
		Exercises		226
8	An	Introduction to Turbulence		228
	8.1	An Historical Interlude		229
	8.2	2 The Structure of Turbulent Flows: Richardso	n's Cascade	233
	8.3	3 Kinematic Preliminaries (for Homogeneous	Furbulence)	239
		8.3.1 Correlation Functions and Structure F	unctions	239
		8.3.2 Spectral Analysis		244
		8.3.3 The Special Case of Statistically Isotr	opic Turbulence	249
	8.4	4 Kolmogorov's Theory of the Small Scales		255
	8.5	5 The Kármán–Howarth Equation		259
		8.5.1 The Kármán–Howarth Equation and t	the Closure Problem	259
		8.5.2 The Four-Fifths Law		262
		8.5.3 Spectral Dynamics		264
	8.6	6 Freely Decaying Turbulence		266
		8.6.1 Saffman versus Batchelor Turbulence	: Two Canonical	
		Energy Decays Laws		266
		8.6.2 Long-Range Interactions in Turbulen	ce	271

	Contents	xi
	8.6.3 Landau's Theory: The Role of Angular Momentum	
	Conservation	273
	8.6.4 Problems with Landau's Theory and Its Partial	
	Resolution	275
9 MI	HD Turbulence at Low and High Magnetic Reynolds Numbers	277
9.1	The Growth of Anisotropy at Low and High R_m	277
9.2	Loitsyansky and Saffman-like Invariants for MHD Turbulence at Low R	
9.3	Decay Laws for Fully Developed MUD Turbulance et L	281
9.4	The Spontaneous Growth of a Seed Field at High R_m : Batchelor's	286
	Criterion	288
9.5	Magnetic Field Generation in Forced, Non-Helical Turbulence	
	at High R_m	291
	9.5.1 Different Categories of Magnetic Field Generation	292
	9.5.2 A Kinematic Model for Field Generation in Forced,	
	Non-Helical Turbulence	294
	9.5.3 The Role of the Magnetic Reynolds and Magnetic	
0.6	Prandtl Numbers	296
9.0	9.6 Unforced, Helical Turbulence at High Magnetic Reynolds	
	9.6.1. Ideal Inverients and Calastic D	297
	9.6.2 Taylor Relayation	298
	963 Dynamic Alignment and Alfridadia Status	300
	2.0.5 Dynamic Angiment and Anvenic States	301
PART III	APPLICATIONS IN ENGINEERING AND MATERIALS	305
10 The	World of Metallurgical MHD	307
10.1	The History of Electrometallurgy	307
10.2	An Overview of the Role of Magnetic Fields in Materials	
	Processing	310
11 The	Generation and Suppression of Motion in Castings	317
11.1	Magnetic Stirring Using Rotating Fields	317
	11.1.1 Casting, Stirring and Metallurgy	317

- 11.1.2 The Magnetic Teaspoon 320 11.1.3 Simple Models of Stirring 322 11.1.4 The Role of Secondary Flows in Steel Casting 325 11.1.5 The Role of Ekman Pumping for Non-Ferrous Metals 327 11.2 Magnetic Damping Using Static Fields
- 332 11.2.1 Metallurgical Applications 332

xi

		11.2.2	The Need to Conserve Momentum in the Face of Joule	
			Dissipation	334
		11.2.3	The Magnetic Damping of Submerged Jets	337
		11.2.4	The Magnetic Damping of Vortices	342
12	Axisy	mmetri	c Flows Driven by the Injection of Current	351
	12.1	The Ne	ed to Purify Metal for Critical Aircraft Parts: Vacuum-Arc	
		Rem	elting	351
	12.2	A Mod	el Problem	354
	12.3	Integral	Constraints and the Work Done by the Lorentz Force	356
	12.4	Structu	re and Scaling of the Flow	359
		12.4.1	Confined versus Unconfined Domains	359
		12.4.2	Shercliff's Solution for Unconfined Domains	361
		12.4.3	Confined Flows	363
	12.5	The Inf	luence of Buoyancy	364
	12.6	The Ap	parent Spontaneous Growth of Swirl	366
		12.6.1	An Extraordinary Experiment	366
		12.6.2	But There Is no Spontaneous Growth of Swirl!	368
		12.6.3	Flaws in Traditional Theories Predicting a Spontaneous	
			Growth of Swirl	369
	12.7	Poloida	al Suppression versus Spontaneous Swirl	369
13	MHI) Instab	ilities in Aluminium Reduction Cells	374
	13.1	The Pr	ohibitive Cost of Reducing Alumina to Aluminium	374
		13.1.1	Early Attempts to Produce Aluminium by Electrolysis	374
		13.1.2	An Instability in Modern Reduction Cells and Its	
			Financial consequences	376
	13.2	Attemp	ots to Model Unstable Interfacial Waves in Reduction	
		Cells	5	377
	13.3	A Sim	ple Mechanical Analogue for the Instability	379
	13.4	Simpli	fying Assumptions and a Model Problem	384
	13.5	A Shal	low-Water Wave Equation for the Model Problem	386
		13.5.1	The Shallow-Water Wave Equations	386
		13.5.2	Key Dimensionless Groups	389
	13.6	Solutio	ons of the Wave Equation	390
		13.6.1	Travelling Waves	390
		13.6.2	Standing Waves in Circular Domains	391
		13.6.3	Standing Waves in Rectangular Domains	392
	13.7	Implic	ations for Cell Design and Potential Routes to Saving	
		Ene	rgy	397
		Exerci	ses	398

Contents

xiii

PART IV	APPLICATIONS IN PHYSICS	399	
14 The	Geodynamo	401	
14.1	Why Do We Need a Dynamo Theory for the Earth?	401	
14.2	14.2 Sources of Convection, Reversals and Kev Dimensionless		
	Groups		
	14.2.1 The Structure of the Earth and Sources of Convection	404	
	14.2.2 Field Structure and Reversals	405	
	14.2.3 Key Dimensionless Groups	408	
14.3	A Comparison with the Other Planets	410	
	14.3.1 The Properties of the Other Planets	410	
	14.3.2 Trends in the Strengths of the Planetary Dipoles: Scaling		
	Laws	413	
14.4	Tentative Constraints on Planetary Dynamo Theories	416	
14.5	Elementary Kinematic Theory: Phenomena, Theorems and		
	Dynamo Types	418	
	14.5.1 A Survey: Six Important Kinematic Results	418	
	14.5.2 A Large Magnetic Reynolds Number Is Required	421	
	14.5.3 Differential Rotation in the Core and the Ω -Effect	422	
	14.5.4 An Axisymmetric Dynamo Is not Possible: Cowling's		
	Theorem	427	
	14.5.5 An Evolution Equation for the Axial Field	429	
	14.5.6 A Glimpse at Parker's Helical Dynamo Mechanism	431	
	14.5.7 Different Classes of Planetary Dynamo	436	
14.6	Building on Parker's Helical Lift-and-Twist Mechanism	440	
	14.6.1 Mean-Field Electrodynamics	440	
	14.6.2 A More Careful Look at the α -Effect	442	
	14.6.3 Exact Integrals Relating the Large-Scale Field to the		
	Small-Scale EMF	446	
	14.6.4 Putting the Pieces Together: A Kinematic Criterion		
	for Dynamo Action	448	
14.7	The Numerical Simulations of Planetary Dynamos	450	
14.8	Speculative Dynamo Cartoons Based on the Numerical		
	Simulations	453	
	14.8.1 Searching for the Source of the North-South Asymmetry		
	in Helicity	453	
	14.8.2 A Speculative Weak-Field Cartoon	456	
140	14.8.5 A Speculative Strong-Field Cartoon	461	
14.9	Dynamics of the Large Scale: the Taylor Constraint	462	
14.10	Laboratory Dynamo Experiments	464	

xiv

	14.10.1 Two Classic Experiments	465
	14.10.2 More Recent Experiments	467
14.11	Scaling Laws for Planetary Dynamos (Reprise)	469
	Exercises	472
15 Stella	ar Magnetism	482
15.1	The Dynamic Sun	483
	15.1.1 The Sun's Interior and Atmosphere	483
	15.1.2 Is There a Solar Dynamo?	486
	15.1.3 Sunspots and the 11-Year Solar Cycle	487
	15.1.4 The Location of the Solar Dynamo and Dynamo	
	Cartoons	488
	15.1.5 Prominences, Flares and Coronal Mass ejections	492
15.2	The Solar Wind	496
	15.2.1 Why is There a Solar Wind?	496
16.0	15.2.2 Parker's Model of the Solar Wind	498
15.3	Accretion Discs	501
	15.3.1 The Basic Properties of Accretion Discs	502
	15.3.2 The Standard Model of Accretion Discs	517
	15.5.5 The Chandrasekhar–venknov instability Revisited	312
16 Plasi	na Containment in Fusion Reactors	514
16.1	The Quest for Controlled Fusion Power	514
16.2	The Requirements for Controlled Nuclear Fusion	515
16.3	Magnetic Confinement and the Instability of Fusion Plasmas	517
	16.3.1 The Topology of Confinement	517
	16.3.2 Sausage-Mode and Kink Instabilities Revisited	518
	16.3.3 Axisymmetric Internal Modes	524
	16.3.4 Interchange and Ballooning Modes	526
16.4	The Development of Tokamak Reactors	532
16.5	Tritium Breeding and Heat Extraction: MHD Channel Flow	
	Revisited	536
	Exercises	539
Appendices		
Appendix	A Vector Identities and Theorems	541
Appendix Peferences	B Physical Properties of Liquid Metals	543
nejerences Index		544
тиел		551