CONTENTS

1.	What	t's in This Book (Read This First!)	1
	1.1	Real people can read this book	1
	1.2	What's in this book	3
	1.3	What's new in the second edition?	6
	1.4	Gimme feedback (be polite)	8
	1.5	Thank you!	8
PAR	TI -	The Basics: Models, Probability, Bayes' Rule, and R 13	3
2.	Intro	duction: Credibility, Models, and Parameters 1	5
	2.1	Bayesian inference is reallocation of credibility across possibilities	6
	2.2	Possibilities are parameter values in descriptive models	2
	2.3	The steps of bayesian data analysis 2	5
	2.4	Exercises	1
3.	The F	R Programming Language 3	3
	3.1	Get the software	5
	3.2	A simple example of R in action	6
	3.3	Basic commands and operators in R 3	8
	3.4	Variable types 4	.2
	3.5	Loading and saving data	3
	3.6	Some utility functions	6
	3.7	Programming in R	o1
	3.8	Graphical plots: opening and saving 6	9
	3.9	Conclusion	9
	3.10	Exercises	0
4.	Wha	t Is This Stuff Called Probability? 7	1
	4.1	The set of all possible events	'2
	4.2	Probability: outside or inside the head	'3
	4.3	Probability distributions	'8
	4.4	Two-way distributions	39
	4.5	Appendix: R code for figure 4.1) 3
	4.6	Exercises) 5

5.	. Bayes' Rule		
	5.1	Bayes' rule	00
	5.2	Applied to parameters and data 1	05
	5.3	Complete examples: estimating bias in a coin	08
	5.4	Why Bayesian inference can be difficult	15
	5.5	Appendix: R code for figures 5.1, 5.2, etc	16
	5.6	Exercises	18

PART II All the Fundamentals Applied to Inferring a Binomial Probability

		a Binomial Probability	121
6.	Infe	rring a Binomial Probability via Exact Mathematical Analysis	
	6.1	The likelihood function: Bernoulli distribution	124
	6.2	A description of credibilities: the beta distribution	
	6.3	The posterior beta	
	6.4	Examples	
	6.5	Summary	
	6.6	Appendix: R code for figure 6.4	
	6.7	Exercises	
7.	Marl	xov Chain Monte Carlo	143
	7.1	Approximating a distribution with a large sample	145
	7.2	A simple case of the Metropolis algorithm	146
	7.3	The Metropolis algorithm more generally	
	7.4	Toward Gibbs sampling: estimating two coin biases	
	7.5	MCMC representativeness, accuracy, and efficiency	
	7.6	Summary	
	7.7	Exercises	
8.	JAGS		193
	8.1	JAGS and its relation to R	193
	8.2	A complete example	
	8.3	Simplified scripts for frequently used analyses	
	8.4	Example: difference of biases	
	8.5	Sampling from the prior distribution in JAGS	
	8.6	Probability distributions available in JAGS	
	8.7	Faster sampling with parallel processing in RunJAGS	
	8.8	Tips for expanding JAGS models	
	8.9	Exercises	

9.	Hiera	archical Models 221
	9.1	A single coin from a single mint
	9.2	Multiple coins from a single mint
	9.3	Shrinkage in hierarchical models
	9.4	Speeding up JAGS
	9.5	Extending the hierarchy: subjects within categories
	9.6	Exercises
10.	Mod	el Comparison and Hierarchical Modeling
	10.1	General formula and the Bayes factor
	10.2	Example: two factories of coins
	10.3	Solution by MCMC
	10.4	Prediction: model averaging
	10.5	Model complexity naturally accounted for
	10.6	Extreme sensitivity to prior distribution
	10.7	Exercises
11.	Null	Hypothesis Significance Testing
	11.1	Paved with good intentions
	11.2	Prior knowledge
	11.3	Confidence interval and highest density interval
	11.4	Multiple comparisons
	11.5	What a sampling distribution is good for 329
	11.6	Exercises
12.	Baye	sian Approaches to Testing a Point ("Null") Hypothesis
	12.1	The estimation approach
	12.2	The model-comparison approach 343
	12.3	Relations of parameter estimation and model comparison
	12.4	Estimation or model comparison? 354
	12.5	Exercises
13.	Goal	s, Power, and Sample Size
	13.1	The will to power
	13.2	Computing power and sample size
	13.3	Sequential testing and the goal of precision
	13.4	Discussion
	13.5	Exercises

14.	4. Stan	
	14.1	HMC sampling
	14.2	Installing Stan
	14.3	A complete example
	14.4	Specify models top-down in Stan
	14.5	Limitations and extras
	14.6	Exercises

15.	Over	view of the Generalized Linear Model	419
	15.1	Types of variables	
	15.2	Linear combination of predictors	423
	15.3	Linking from combined predictors to noisy predicted data	
	15.4	Formal expression of the GLM	
	15.5	Exercises	
16.	Metr	ic-Predicted Variable on One or Two Groups	
	16.1	Estimating the mean and standard deviation of a normal distribution	
	16.2	Outliers and robust estimation: the <i>t</i> distribution	
	16.3	Two groups	
	16.4	Other noise distributions and transforming data	
	16.5	Exercises	
17.	Metr	ic Predicted Variable with One Metric Predictor	
	17.1	Simple linear regression	478
	17.2	Robust linear regression	479
	17.3	Hierarchical regression on individuals within groups	
	17.4	Quadratic trend and weighted data	
	17.5	Procedure and perils for expanding a model	501
	17.6	Exercises	
18.	Metr	ic Predicted Variable with Multiple Metric Predictors	
	18.1	Multiple linear regression	
	18.2	Multiplicative interaction of metric predictors	
	18.3	Shrinkage of regression coefficients	530
	18.4	Variable selection	
	18.5	Exercises	

19.	Metri	ic Predicted Variable with One Nominal Predictor	553
	19.1	Describing multiple groups of metric data	554
	19.2	Traditional analysis of variance.	556
	19.3	Hierarchical Bayesian approach	557
	19.4	Including a metric predictor	568
	19.5	Heterogeneous variances and robustness against outliers	573
	19.6	Exercises	579
20.	Metr	ic Predicted Variable with Multiple Nominal Predictors	583
	20.1	Describing groups of metric data with multiple nominal predictors	584
	20.2	Hierarchical Bayesian approach	588
	20.3	Rescaling can change interactions, homogeneity, and normality	599
	20.4	Heterogeneous variances and robustness against outliers	602
	20.5	Within-subject designs	606
	20.6	Model comparison approach	616
	20.7	Exercises	618
21.	Dich	otomous Predicted Variable	621
	21.1	Multiple metric predictors	622
	21.2	Interpreting the regression coefficients	629
	21.3	Robust logistic regression	635
	21.4	Nominal predictors	636
	21.5	Exercises	646
22.	Nom	ninal Predicted Variable	649
	22.1	Softmax regression	650
	22.2	Conditional logistic regression	655
	22.3	Implementation in JAGS	659
	22.4	Generalizations and variations of the models	667
	22.5	Exercises	668
23.	Ordi	inal Predicted Variable	671
	72 1	Modeling ordinal data with an underlying metric variable	672
	22.1	The case of a single group	675
	23.2	The case of two groups	682
	23.5	The case of metric predictors	685
	23.4	Posterior prediction	698
	23.5	Generalizations and extensions	699
	23.7	Exercises	700

24.	Cour	nt Predicted Variable	
	24.1	Poisson exponential model	
	24.2	Example: hair eye go again	
	24.3	Example: interaction contrasts, shrinkage, and omnibus test	
	24.4	Log-linear models for contingency tables	
	24.5	Exercises	
25.	Tools	s in the Trunk	
	25.1	Reporting a Bayesian analysis	
	25.2	Functions for computing highest density intervals	
	25.3	Reparameterization	
	25.4	Censored data in JAGS732	
	25.5	What next?	
Bibliography			
Index	(